Первообразные корни — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Количество первообразных корней)
м (Применение шаблона Определение)
Строка 1: Строка 1:
 
==Первообразные корни==
 
==Первообразные корни==
 
===Количество первообразных корней===
 
===Количество первообразных корней===
* '''Определение.''' ''<math>g</math> называется первообразным корнем по модулю n, если'' <math>ord(g)=</math>φ<math>(n)</math><br>
+
{{Определение
Где <math>ord</math> - порядок числа, а φ - функция Эйлера.<br>
+
|definition=
 +
Число <tex>g</tex> называется '''первообразным корнем''' по модулю <tex>n</tex>, если <tex>ord(g)= \phi(n)</tex>.
 +
}}
 +
 
 +
Где <tex>ord(n)</tex> — [[порядок числа]] <tex>n</tex>, а <tex>\phi(n)</tex> — [[функция Эйлера]].<br />
 +
 
 
* '''Теорема'''. Пусть <math>g</math> - первообразный корень по модулю <math>p</math><tex>\in\mathbb{P}</tex>. Тогда <math>g</math><sup>a</sup> - ''первообразный корень по модулю <math>p</math> <math>\Leftrightarrow</math> НОД<math>(a;p-1)=1</math>.''<br>
 
* '''Теорема'''. Пусть <math>g</math> - первообразный корень по модулю <math>p</math><tex>\in\mathbb{P}</tex>. Тогда <math>g</math><sup>a</sup> - ''первообразный корень по модулю <math>p</math> <math>\Leftrightarrow</math> НОД<math>(a;p-1)=1</math>.''<br>
 
** '''Доказательство (прямая теорема)'''<br>
 
** '''Доказательство (прямая теорема)'''<br>

Версия 12:24, 21 июня 2010

Первообразные корни

Количество первообразных корней

Определение:
Число [math]g[/math] называется первообразным корнем по модулю [math]n[/math], если [math]ord(g)= \phi(n)[/math].


Где [math]ord(n)[/math]порядок числа [math]n[/math], а [math]\phi(n)[/math]функция Эйлера.

  • Теорема. Пусть [math]g[/math] - первообразный корень по модулю [math]p[/math][math]\in\mathbb{P}[/math]. Тогда [math]g[/math]a - первообразный корень по модулю [math]p[/math] [math]\Leftrightarrow[/math] НОД[math](a;p-1)=1[/math].
    • Доказательство (прямая теорема)

Так как ga - первообразный корень, значит (ga)φ(p)=1, но p[math]\in\mathbb{P}[/math], поэтому φ(p)=p-1, значит (ga)p-1=1, и это же справедливо для g: gp-1=1. Пусть НОД(a;p-1)=k, k>1, тогда [math]1=g^{p-1}=(g^{p-1})^{\frac{a}{k}}=(g^{\frac{p-1}{k}})^a=(g^a)^{\frac{p-1}{k}}[/math]. Но, по определению ord, [math]p-1[/math] - минимальная степень, в которую следует возвести [math]g^a[/math], чтобы получить единицу, а [math]\frac{p-1}{k}\lt p-1[/math]. Получили противоречие, теорема доказана.

    • Доказательство (обратная теорема)

Пусть существует k такое, что [math]g^{a\cdot k}=1[/math], и [math]k\lt p-1[/math]. Но [math]g^{p-1}=1[/math], значит [math]g^{a\cdot k}=g^{p-1}[/math]. Следовательно либо [math](a*k) \vdots (p-1)[/math], либо [math](p-1) \vdots (a*k)[/math]. Но по определению первообразного корня, и ord, [math]p-1 \leqslant a*k[/math], то есть [math](a*k) \vdots (p-1)[/math], а так как НОД[math](a; p-1)=1[/math], то [math]k \vdots (p-1) \Rightarrow p-1 \leqslant k[/math], что противоречит нашему предположению. Обратная теорема доказана.

  • Следствие Количество различных первообразных корней по модулю p равно φ(p-1).

Доказательство
Пусть g - первообразный корень.
Во-первых, при [math]a=k*(p-1)+b \text{, }b\lt p-1 \colon g^a=(g^{p-1})^{k}*g^b=1\cdot g^{b}[/math]. Таким образом есть смысл рассматривать только первообразные корни, образованные из исходного, путем возведения в степень не выше [math]p-1[/math].
Во-вторых, исходный первообразный корень существует, так как мультипликативная группа поля вычетов [math]\mathbb{Z}/p \mathbb{Z}[/math] циклична (то есть [math]\exists a\in\mathbb{Z}/p\mathbb{Z}\colon\forall b\in\mathbb{Z}/p\mathbb{Z} \text{ } \exists k\colon a^k=b[/math]).
По доказанной обратной теореме [math]\forall a \colon с (a \text{; } p-1)=1 \Rightarrow g^a[/math] - первообразный корень. С другой стороны для любого другого a, по прямой теореме [math]g^a[/math] не является первообразным корнем. Но по определению [math]\varphi(p-1)[/math] равно количеству [math]a \colon [/math] НОД [math](a;p-1)=1[/math]. Очевидно, для всех [math]a\lt p-1\text{, }g^a[/math] различны. Теорема доказана.

Теорема о существовании первообразных корней по модулям [math]4 \text{, }p^n \text{, }2 \cdot p^n[/math]