Редактирование: Пересечение матроидов, определение, примеры

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Пусть даны два матроида <tex>M_1 = \langle X, \mathcal{I}_1\rangle</tex> и <tex>M_2 = \langle X, \mathcal{I}_2 \rangle</tex>.  
+
Пусть даны два матроида <tex>M_1 = (X, I_1)</tex> и <tex>M_2 = (X, I_2)</tex>. '''Пересечением матроидов''' <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = (X, I)</tex>, где <tex>X</tex> - носитель исходных матроидов, а <tex> I = I_1 \cap I_2</tex>.
 
 
'''Пересечением матроидов''' (англ. ''matroid intersection'') <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = \langle X, \mathcal{I} \rangle</tex>, где <tex>X</tex> {{---}} носитель исходных матроидов, а <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>.
 
 
 
}}
 
* Пересечение матроидов не всегда является матроидом.
 
* Пересечение трех и более матроидов является [[Примеры NP-полных языков| NP-полной задачей]].
 
 
 
 
 
== Разноцветный лес ==
 
 
 
<tex>M_1</tex> {{---}} [[Примеры_матроидов|графовый матроид]], <tex>M_2</tex> {{---}} '''разноцветный матроид''' (англ. ''multicolored matroid'') (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение {{---}} это '''разноцветный лес''' (англ. ''rainbow forests'').
 
[[Файл:Rainbow_forest_DY.png|500px|thumb|center|Пересечение матроидов, [[Алгоритм_построения_базы_в_пересечении_матроидов|база]] матроида]]
 
 
 
{{Утверждение
 
|statement =
 
Пересечение данных матроидов не является матроидом.
 
|proof =
 
Рассмотрим пару <tex>\langle X, \mathcal{I}\rangle</tex>, <tex>X</tex> {{---}} ребра разноцветного леса, <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>.
 
Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть <tex>\exists A, B \in \mathcal{I}, |A| > |B| </tex> и <tex>\nexists \, x \in A \setminus B : B \cup \{x\} \in \mathcal{I}</tex> (См. пример <tex>1</tex>)
 
[[Файл:Example2_DY.png|300px|thumb|left|Пример 1]]
 
 
 
}}
 
 
 
== Двудольный граф ==
 
Пусть <tex>G</tex> {{---}} [[Двудольные_графы_и_раскраска_в_2_цвета|двудольный граф]] и заданы два матроида <tex>M_1 = \langle X, \mathcal{I}_1 \rangle</tex>, <tex>M_2 = \langle X, \mathcal{I}_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>\mathcal{I}_1 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in L \}</tex>, <tex>\mathcal{I}_2 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа.
 
 
 
{{Утверждение
 
|statement =
 
Пересечение данных матроидов не является матроидом.
 
|proof =
 
Рассмотрим пару <tex>\langle X, \mathcal{I}\rangle</tex>, <tex>X</tex> {{---}} носитель, <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>.
 
Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть <tex>\exists A, B \in \mathcal{I}, |A| > |B| </tex> и <tex>\nexists \, x \in A \setminus B : B \cup \{x\} \in \mathcal{I}</tex> (См. пример 2)
 
[[Файл:Example_DY.png|300px|thumb|left|Пример 2]]
 
}}
 
 
 
== Ориентированный лес ==
 
{{Определение
 
|definition=
 
'''Ориентированное дерево''' (англ. ''arborescence'') {{---}} ацикличный орграф (ориентированный граф, не содержащий циклов), в котором только одна вершина имеет нулевую степень захода (в неё не ведут дуги), а все остальные вершины имеют степень захода <tex>1</tex> (в них ведёт ровно по одной дуге).
 
}}
 
Пусть <tex>D = \langle V, X \rangle </tex> {{---}} ориентированнный граф.
 
Граф <tex>G</tex> {{---}} неориентированный граф, соответствующий графу <tex>D</tex>.
 
Тогда рассмотрим два матроида <tex>M_1 = \langle X, \mathcal{I}_1 \rangle, M_2 = \langle X, \mathcal{I}_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа.
 
<tex>M_1</tex> {{---}} [[Примеры_матроидов|графовый матроид]] <tex>G</tex>,
 
<tex>\mathcal{I}_1 = \{X' \subseteq X: X'</tex> {{---}} лес в <tex>G \}</tex>.
 
<tex>M_2</tex> {{---}} [[Примеры_матроидов|матроид разбиений]] графа <tex>D</tex>,
 
<tex>\mathcal{I}_2 = \{X' \subseteq X: |\deg^-(v) \cap X'| \leqslant 1, \forall v \in V \}</tex>.
 
Пересечение данных матроидов являются множества ориентированных лесов.
 
 
 
{{Утверждение
 
|statement = Пересечение данных матроидов является матроидом.
 
|proof =
 
Рассмотрим матроид пересечения <tex>M = \langle X, \mathcal{I} \rangle</tex>, <tex>A</tex> {{---}} множество ребер, <tex>\mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>
 
 
 
Проверим выполнение аксиом независимости:
 
 
 
1) <tex>\varnothing \in \mathcal{I}</tex>
 
 
 
Пустое множество является ориентированным деревом, а значит входит в <tex>\mathcal{I}</tex>.
 
 
 
2) <tex>A \subset B, \ B \in \mathcal{I} \Rightarrow A \in \mathcal{I}</tex>
 
Любой подграф ориентированного леса также является ориентированным лесом, так как во-первых, степень захода каждой вершины в подграфе могла только уменьшится, во-вторых, подграф ацикличного графа {{---}} ацикличен.
 
 
 
3) <tex>A \in \mathcal{I}, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \exists \, x \in B \setminus A, \ A \cup \{ x \} \in \mathcal{I}</tex>
 
 
 
Пусть количество вершин в множестве <tex>A</tex> равно <tex>k</tex>.
 
Тогда количество ребер в <tex>A</tex> равно <tex>k - 1</tex>.
 
Так как <tex>|B| > |A|</tex>, следовательно количество ребер в множестве <tex>B</tex> не меньше <tex>k</tex>.
 
Пусть все ребра из множества <tex>B</tex> ведут в вершины множества <tex>A</tex>, значит в каждую вершину множества <tex>A</tex> входит по одному ребру множества <tex>B</tex>.
 
Тогда возьмем то ребро, которое указывает в корень (в вершину с нулевой степенью захода), получим ориентированное дерево с новым корнем.
 
Пусть не все ребра множества <tex>B</tex> указывают в вершины множества <tex>A</tex>, тогда возьмем то ребро <tex>uv</tex>, которое указывает в вершину не принадлежащую <tex>A</tex>. Покажем, что оно нам подойдет.
 
Если <tex>u \in V(A)</tex>, тогда наше текущее ориентированное дерево пополнится еще одной вершиной и ведущем к ней ребру.
 
Если <tex>u \notin V(A)</tex>, то мы получим еще одно ориентированное дерево.
 
Таким образом, мы нашли ребро в множестве <tex>B \setminus A</tex>, которое можем добавить в множество <tex>A</tex> с сохранением независимости.
 
 
 
 
}}
 
}}
  
== См. также==
+
'''Примеры'''
* [[Примеры матроидов]]
 
* [[Алгоритм построения базы в пересечении матроидов]]
 
* [[Алгоритм построения базы в объединении матроидов]]
 
  
==Источники информации ==
+
1) <tex>M_1</tex> - графовый матроид, <tex>M_2</tex> - "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение - это разноцветный лес (англ. Rainbow forests)
* Асанов М. О., Баранский В. А., Расин В. В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
 
* [http://www-math.mit.edu/~goemans/18433S09/matroid-intersect-notes.pdf Lecture notes on matroid intersection]
 
  
[[Категория:Алгоритмы и структуры данных]]
+
2) Пусть <tex>G</tex>  - двудольный граф и заданы два матроида <tex>M_1 = (X, I_1)</tex>, <tex>M_2 = (X, I_2)</tex>, где <tex>X</tex> - множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение - это множество всевозможных паросочетаний графа.
[[Категория:Матроиды]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)