Изменения

Перейти к: навигация, поиск

Пересечение матроидов, определение, примеры

7734 байта добавлено, 17:41, 11 января 2020
м
Ориентированный лес опечатка
{{Определение
|definition =
Пусть даны два матроида <tex>M_1 = \langle X, I_1\mathcal{I}_1\rangle</tex> и <tex>M_2 = \langle X, I_2 \mathcal{I}_2 \rangle</tex>.  '''Пересечением матроидов''' (англ. ''matroid intersection'') <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = \langle X, \mathcal{I } \rangle</tex>, где <tex>X</tex> {{- --}} носитель исходных матроидов, а <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>. }}* Пересечение матроидов не всегда является матроидом.* Пересечение трех и более матроидов является [[Примеры NP-полных языков| NP-полной задачей]].  == Разноцветный лес == <tex>M_1</tex> {{---}} [[Примеры_матроидов|графовый матроид]], <tex>M_2</tex> {{---}} '''разноцветный матроид''' (англ. ''multicolored matroid'') (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение {{---}} это '''разноцветный лес''' (англ. ''rainbow forests'').[[Файл:Rainbow_forest_DY.png|500px|thumb|center|Пересечение матроидов, [[Алгоритм_построения_базы_в_пересечении_матроидов|база]] матроида]] {{Утверждение|statement =Пересечение данных матроидов не является матроидом.|proof =Рассмотрим пару <tex>\langle X, \mathcal{I}\rangle</tex>, <tex>X</tex> {{---}} ребра разноцветного леса, <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>.Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть <tex>\exists A, B \in \mathcal{I}, |A| > |B| </tex> и <tex>\nexists \, x \in A \setminus B : B \cup \{x\} \in \mathcal{I}</tex> (См. пример <tex>1</tex>)[[Файл:Example2_DY.png|300px|thumb|left|Пример 1]] }} == Двудольный граф ==Пусть <tex>G</tex> {{---}} [[Двудольные_графы_и_раскраска_в_2_цвета|двудольный граф]] и заданы два матроида <tex>M_1 = \langle X, \mathcal{I}_1 \rangle</tex>, <tex>M_2 = \langle X, \mathcal{I }_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>\mathcal{I}_1 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in L \}</tex>, <tex>\mathcal{I}_2 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа. {{Утверждение|statement =Пересечение данных матроидов не является матроидом.|proof = I_1 Рассмотрим пару <tex>\langle X, \mathcal{I}\rangle</tex>, <tex>X</tex> {{---}} носитель, <tex> \mathcal{I} = \mathcal{I}_1 \cap I_2\mathcal{I}_2</tex>.Данная пара не является матроидом, так как не выполняется третье свойство матроида, то есть <tex>\exists A, B \in \mathcal{I}, |A| > |B| </tex> и <tex>\nexists \, x \in A \setminus B : B \cup \{x\} \in \mathcal{I}</tex> (См. пример 2)[[Файл:Example_DY.png|300px|thumb|left|Пример 2]]}} == Ориентированный лес =={{Определение|definition='''Ориентированное дерево''' (англ. ''arborescence'') {{---}} ацикличный орграф (ориентированный граф, не содержащий циклов), в котором только одна вершина имеет нулевую степень захода (в неё не ведут дуги), а все остальные вершины имеют степень захода <tex>1</tex> (в них ведёт ровно по одной дуге).}}Пусть <tex>D = \langle V, X \rangle </tex> {{---}} ориентированнный граф.Граф <tex>G</tex> {{---}} неориентированный граф, соответствующий графу <tex>D</tex>. Тогда рассмотрим два матроида <tex>M_1 = \langle X, \mathcal{I}_1 \rangle, M_2 = \langle X, \mathcal{I}_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа.<tex>M_1</tex> {{---}} [[Примеры_матроидов|графовый матроид]] <tex>G</tex>, <tex>\mathcal{I}_1 = \{X' \subseteq X: X'</tex> {{---}} лес в <tex>G \}</tex>.<tex>M_2</tex> {{---}} [[Примеры_матроидов|матроид разбиений]] графа <tex>D</tex>, <tex>\mathcal{I}_2 = \{X' \subseteq X: |\deg^-(v) \cap X'| \leqslant 1, \forall v \in V \}</tex>. Пересечение данных матроидов являются множества ориентированных лесов. {{Утверждение|statement = Пересечение данных матроидов является матроидом.|proof =Рассмотрим матроид пересечения <tex>M = \langle X, \mathcal{I} \rangle</tex>, <tex>A</tex> {{---}} множество ребер, <tex>\mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex> Проверим выполнение аксиом независимости: 1) <tex>\varnothing \in \mathcal{I}</tex> Пустое множество является ориентированным деревом, а значит входит в <tex>\mathcal{I}</tex>. 2) <tex>A \subset B, \ B \in \mathcal{I} \Rightarrow A \in \mathcal{I}</tex>Любой подграф ориентированного леса также является ориентированным лесом, так как во-первых, степень захода каждой вершины в подграфе могла только уменьшится, во-вторых, подграф ацикличного графа {{---}} ацикличен. 3) <tex>A \in \mathcal{I}, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \exists \, x \in B \setminus A, \ A \cup \{ x \} \in \mathcal{I}</tex> Пусть количество вершин в множестве <tex>A</tex> равно <tex>k</tex>. Тогда количество ребер в <tex>A</tex> равно <tex>k - 1</tex>. Так как <tex>|B| > |A|</tex>, следовательно количество ребер в множестве <tex>B</tex> не меньше <tex>k</tex>.Пусть все ребра из множества <tex>B</tex> ведут в вершины множества <tex>A</tex>, значит в каждую вершину множества <tex>A</tex> входит по одному ребру множества <tex>B</tex>. Тогда возьмем то ребро, которое указывает в корень (в вершину с нулевой степенью захода), получим ориентированное дерево с новым корнем.Пусть не все ребра множества <tex>B</tex> указывают в вершины множества <tex>A</tex>, тогда возьмем то ребро <tex>uv</tex>, которое указывает в вершину не принадлежащую <tex>A</tex>. Покажем, что оно нам подойдет. Если <tex>u \in V(A)</tex>, тогда наше текущее ориентированное дерево пополнится еще одной вершиной и ведущем к ней ребру.Если <tex>u \notin V(A)</tex>, то мы получим еще одно ориентированное дерево.Таким образом, мы нашли ребро в множестве <tex>B \setminus A</tex>, которое можем добавить в множество <tex>A</tex>с сохранением независимости
}}
==ПримерыСм. также==* [[Примеры матроидов]]* [[Алгоритм построения базы в пересечении матроидов]]* [[Алгоритм построения базы в объединении матроидов]]
1==Источники информации ==* Асанов М. О., Баранский В. А., Расин В. В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды) <tex>M_1<* [http://tex> www- графовый матроид, <tex>M_2<math.mit.edu/~goemans/18433S09/tex> matroid- "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение intersect- это разноцветный лес (англnotes. Rainbow forests)pdf Lecture notes on matroid intersection]
2) Пусть <tex>G</tex> - двудольный граф [[Категория:Алгоритмы и заданы два матроида <tex>M_1 = \langle X, I_1 \rangle</tex>, <tex>M_2 = \langle X, I_2 \rangle</tex>, где <tex>X</tex> - множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \структуры данных]][[Категория: \forall v \in R \}</tex>. Тогда их пересечение - это множество всевозможных паросочетаний графа.Матроиды]]
1
правка

Навигация