Изменения

Перейти к: навигация, поиск
Связь пересечения полуплоскостей с выпуклой оболочкой
[[Файл:samplesHalfspaces.png|400px|thumb|right|Пересечение существует и выпукло, неограниченно или пусто]]
== Предикат трех прямых ==
Задача: есть конечное множество полуплоскостей, найти фигуру их пересечения или сообщить что оно пусто.
<tex>
A'' \left<(B'; -B);(-C; -C') \right> + B'' \left<(-A'; A);(-C; -C') \right> + C'' \begin{vmatrix} A & B \\ A' & B' \end{vmatrix} =</tex> <tex>= A'' \begin{vmatrix} B' & B \\ -C' & -C \end{vmatrix} - B'' \begin{vmatrix} A' & A \\ -C' & -C \end{vmatrix} + C'' \begin{vmatrix} A & A' \\ B & B' \end{vmatrix} =</tex>  <tex>= A'' \begin{vmatrix} B' & B \\ -C' & -C \end{vmatrix} - B'' \begin{vmatrix} A' & A \\ -C' & -C \end{vmatrix} - C'' \begin{vmatrix} A' & A \\ B' & B \end{vmatrix} = \begin{vmatrix} A'' & A' & A \\ B'' & B' & B \\ -C'' & -C' & -C \end{vmatrix} =</tex><tex>
= \begin{vmatrix} A & B & C \\ A' & B' & C' \\ A'' & B'' & C'' \end{vmatrix}
</tex>
От пересечения цепочек напрямую зависит фигура пересечения: неограниченная область получается если одна из цепочек пуста, а ограниченная {{---}} когда обе цепочки не пусты и пересекаются.
=== Связь пересечения полуплоскостей с выпуклой оболочкой ===
{{Лемма
'''Важно:''' Покажем конструктивный алгоритм для множестве полуплоскостей, не содержащих вертикальный полуплоскости. После леммы приведены два рассуждения, позволяющие снять данное ограничение.
 
'''Важно:''' В картинке перепутаны <tex>P</tex> и <tex>P^\star</tex>. TODO
 
Рассмотрим планарный случай и предположим, что вертикальные и параллельные прямые отсутствуют (в конце приведем два способа решения данной проблемы).
Пусть у нас есть множество ориентированных прямых, каждая из которых задает полуплоскость(направление вектора нормали задаёт нужную полуплоскость).
Тогда каждую плоскость мы можем превратить в точку в двойственном пространстве: <tex> P(p_x, p_y) \Rightarrow P^\star (p_x x - p_y)</tex>.
Далее воспользуемся основными свойствами дуальной трансформации (см. доказательтсво в конспекте о [[двойственное пространство|двойственном прострастве]]):
#<tex>p</tex> <tex>\in</tex> <tex>l</tex> <tex>\Leftrightarrow</tex> <tex>l^\star</tex> <tex>\in</tex> <tex>p^\star</tex>, где <tex>p</tex> - точка в исходном пространстве, <tex>l</tex> - прямая в исходном пространстве, <tex>l^\star</tex>, <tex>p^\star</tex> - их дуальное отображение.
#<tex>p</tex> лежит "над" <tex>l</tex> <tex>\Leftrightarrow</tex> <tex>l^\star</tex> лежит "над" <tex>p^\star</tex>
 '''Важно 2:''' * <tex>p^\star</tex> - точка в двойственном пространстве, <tex>p</tex> - линия в исходном,* <tex>l^\star</tex> - прямая в двойственном пространстве, <tex>l</tex> - точка в исходном,* Значок <tex>*</tex> означает, что элемент из двойственного пространства.Рассмотрим множество точек(<tex>P^\star</tex>) в двойственном пространстве и рассмотрим верхнюю часть выпуклой оболочки, построенной на этих точках. Обозначим её за <tex>\mathcal{UH}</tex>(Upper hull). Далее мы будем работать только с прямыми(в исходном пространстве), у которых вектор нормали направлен вниз, т.е они образовывают верхнюю цепочку.
По свойству выпуклой оболочки, любое ребро из цепи <tex>\mathcal{UH}</tex> содержит "ниже" себя все точки множества <tex>P^\star</tex>, а так же эта цепь соединяет самую правую точку с самой левой.
Рассмотрим какую-то точку <tex>p^\star \in P^\star</tex> и заметим, что она будет принадлежать цепи <tex>\mathcal{UH}</tex> <tex>\Leftrightarrow</tex> <tex>\exists</tex> прямая <tex>l^\star </tex> : <tex>p^\star \in l^\star</tex> и все точки из <tex>P^\star</tex> лежат ниже <tex>l^\star</tex> (сейчаc мы жили в двойственном пространстве). В обычном пространстве данный факт эквивалентен следующему:
*Дуальное отображение точки <tex>lp^\star</tex> в базовое пространство {{---}} прямая <tex>lp</tex>, которая по ''первому свойству'' содержит точку <tex>pl</tex>(в базовом пространстве прямая <tex>p^\star</tex> перешла в точку <tex>p</tex>).
*Так как прямая <tex>l^\star</tex> лежит выше всех точек, то теперь каждая прямая из <tex>P</tex> лежит выше точки <tex>l</tex> (по свойству 2).
Итого: у нас есть точка <tex>l</tex> на прямой <tex>p</tex>, лежащая ниже всех остальных прямых из <tex>P</tex>.
Взглянем Посмотрим на планарный граф множества(рис.2) прямых. Из факта выше, мы можем понять, что <tex>p</tex> внесла ребро, которая принадлежит нижней части планарного графав самый нижний фейс(именно тойтот, что который задаёт часть пересечения полуплоскостей). Обозначим цепочку данного фейса, как <tex>\mathcal{LE}</tex>. Математически данную цепочку мы можем описать, как минимум из всех линейных функция (заданные прямыми) в <tex>P</tex>. Так же <tex>X</tex> компонента узлов этой цепочки монотонно возрастает.
Вернемся к <tex>\mathcal{UH}</tex> и заметим, что при обходе цепи, координата <tex>X</tex> точек растет. Если же мы будет обходить цепочку из <tex>P</tex>, образующую пересечение полуплоскостей, мы заметим, что наклон прямых уменьшается. Учитывая этот факт, и то что наклон линии из <tex>\mathcal{LE}</tex> совпадет с <tex>X</tex> координатой точки (вспоминаем отображение и применяем производную), можно сделать вывод, что обход слева направо точек из цепи <tex>\mathcal{UH}</tex>, совпадает с обходом точек из <tex>\mathcal{LE}</tex> справа налево.
(Обе линии монотоны, одна возрастает, другая убывает. Количество точек в массиве одинаковое, при это каждая точка из <tex>\mathcal{UH}</tex> внесла вклад в <tex>\mathcal{LE}</tex>)
 
Напоследок, cоседние точки <tex>p^\star</tex> и <tex>q^\star</tex> из <tex>P^\star</tex> образуют какое-то или принадлежат какому-то ребру <tex>\mathcal{UH}</tex> <tex>\Leftrightarrow</tex> все точки из <tex>P^\star</tex> лежат "ниже" линии, построенной на точках <tex>p^\star</tex> и <tex>q^\star</tex>. В исходном пространстве это означает: все прямые из пространства <tex>P</tex> за исключением прямых <tex>p</tex> и <tex>q</tex> лежат над пересечением <tex>p</tex> и <tex>q</tex>. Это достаточное условие, что пересечение <tex>p</tex> и <tex>q</tex> <tex>\in</tex> <tex>\mathcal{LE}</tex>.
 
Таким образом мы построили верхнее пересечение полуплоскостей. Аналогичным образом строится нижнее, затем мы пересекаем полученные две цепочки.
}}
Что же делать с вертикальными линиями?
# Найдем все вертикальным прямые за <tex>O(N)</tex>. Возьмем самую правую, у которой нормаль смотрит вправо, и самую левую, у которых нормаль смотрит влево. Построим верхнюю цепь и нижнюю цепь без всех вертикальных прямых, затем пересечем верхнюю цепь, нижнюю цепь, самую правую и самую левую вертикальную прямую.
# Перейдем в однородное двойственное пространство.
== Источники ==
* http://wwwisg.cs.uni-magdeburg.de/ag/lehre/SS2012/GAG/slides/V12.pdf
* Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars (2008), Computational Geometry: Algorithms and Applications (3rd edition), Springer-Verlag, ISBN 978-3-540-77973-5 Chapter 11 page 253-254
[[Категория: Вычислительная геометрия]]
Анонимный участник

Навигация