Изменения

Перейти к: навигация, поиск
м
Варианты решения
=== Еще одно решение ===
В первом массиве выберем серединный элемент <tex>(i = n / 2)</tex> и бинпоиском [[Целочисленный двоичный поиск|бинарным поиском]] найдем во втором массиве позицию <tex>j</tex>, на которой стоит наибольший элемент, меньший <tex>a[i]</tex>. Если <tex>i + j = k - 2</tex>, то мы нашли <tex>k</tex>-ую порядковую статистику {{---}} это элемент <tex>a[i]</tex>. Иначе, если <tex>i + j > k - 2</tex>, то далее тем же способом ищем в массиве <tex>A</tex> в диапазоне индексов <tex>[0, i - 1]</tex>, а если <tex>i + j < k - 2</tex>, то в диапазоне индексов <tex>[i + 1, n - 1]</tex>. Решая задачу таким способом, мы получим асимптотику <tex>O(\log(n) \cdot \log(m))</tex>.
=== Совсем не наивное решение ===
Оба решенияПриведём теперь решение, приведенные выше, работают работающие за линейное время, то есть приемлемы только при небольших значениях <tex>k</tex>. Следующее решение работает за <tex>O(\log(\min(n, m)))</tex>.
Чтобы получить логарифмическую сложность, будем использовать [[Целочисленный двоичный поиск|бинарный поиск]], который сокращает область поиска с каждой итерацией. То есть для достижения нужной сложности мы должны на каждой итерации сокращать круг поиска в каждом из массивов. Рассмотрим Для начала рассмотрим следующую ситуацию: пусть у нас есть элемент <tex>a[i]</tex> из массива <tex>A</tex> и элемент <tex>b[j]</tex> из массива <tex>B</tex> и они связаны неравенством <tex>b[j - 1] < a[i] < b[j]</tex>. Тогда <tex>a[i]</tex> есть <tex>(j + i + 1)</tex>-ый порядковый элемент после слияния массивов. Это объясняется тем, что до <tex>a[i]</tex>-ого элемента идут <tex>(j - 1)</tex> элемент из массива <tex>B</tex>, <tex>i</tex> элементов из массива <tex>A</tex> (включая сам элемент <tex>a[i]</tex>). В итоге получаем <tex>j + i + 1</tex>. Принимая это во внимание, будем выбирать <tex>i</tex> и <tex>j</tex> таким образом, чтобы <tex>j + i + 1 = k</tex>.
Подведем промежуточный итог:

Навигация