Покрытие рёбер графа путями — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «==Покрытие ребер графа путями== Следующее утверждение являются следствием из [[Эйлеров_цик…»)
 
м (rollbackEdits.php mass rollback)
 
(не показаны 32 промежуточные версии 11 участников)
Строка 1: Строка 1:
==Покрытие ребер графа путями==
 
 
Следующее утверждение являются следствием из [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов|критерия Эйлеровости]] [[Основные определения теории графов|графа]]:
 
Следующее утверждение являются следствием из [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов|критерия Эйлеровости]] [[Основные определения теории графов|графа]]:
 +
{{Теорема|statement=
 +
Пусть <tex>G</tex> {{---}} связный граф, в котором <tex>2N</tex> вершин имеют нечётную [[Основные определения теории графов|степень]]. Тогда множество рёбер <tex>G</tex> можно покрыть <tex>N</tex> [[Основные определения теории графов|рёберно-простыми]] путями.
 +
|proof=
  
Пусть <math>G</math> - [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#cite_note-almost-0|почти связный]] граф, в котором <math>2N</math> вершин имеют нечетную [[Основные определения теории графов|степень]]. Тогда множество ребер <math>G</math> можно покрыть <math>N</math> реберно простыми путями.
+
Рассмотрим связный граф <tex>G,</tex> который содержит <tex>2N</tex> вершин, имеющих нечётную степень. Докажем, что его можно покрыть <tex>N</tex> рёберно-простыми путями.
 +
 
 +
Добавим в граф <tex>N</tex> рёбер, соединив попарно вершины, имеющие нечётные степени, и получим связный граф <tex>G',</tex> все вершины которого имеют чётную степень. Такой граф удовлетворяет [[Эйлеровость_графов#.D0.9A.D1.80.D0.B8.D1.82.D0.B5.D1.80.D0.B8.D0.B9_.D1.8D.D0.B9.D0.BB.D0.B5.D1.80.D0.BE.D0.B2.D0.BE.D1.81.D1.82.D0.B8|критерию эйлеровости]] и содержит эйлеров цикл. Рассмотрим этот цикл и удалим из него <tex>N</tex> добавленных ребер <tex>G' \backslash G.</tex> Цикл распадётся на <tex>N</tex> путей, которые являются простыми, так как рассматриваемый цикл эйлеров, и покрывают весь граф, поэтому полученное разбиение является искомым.
 +
}}
  
 
==См. также==
 
==См. также==
[[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов]]
+
* [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов|Эйлеровость графов]]
 +
 
 +
==Источники информации==
 +
* Харари Фрэнк '''Теория графов''' = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
  
==Источники==
+
[[Категория: Алгоритмы и структуры данных]]
1. Ф.Харари. Теория графов. Москва, издательство "Едиториал УРСС". 2003 г.
+
[[Категория: Обходы графов]]
 +
[[Категория: Эйлеровы графы]]

Текущая версия на 19:35, 4 сентября 2022

Следующее утверждение являются следствием из критерия Эйлеровости графа:

Теорема:
Пусть [math]G[/math] — связный граф, в котором [math]2N[/math] вершин имеют нечётную степень. Тогда множество рёбер [math]G[/math] можно покрыть [math]N[/math] рёберно-простыми путями.
Доказательство:
[math]\triangleright[/math]

Рассмотрим связный граф [math]G,[/math] который содержит [math]2N[/math] вершин, имеющих нечётную степень. Докажем, что его можно покрыть [math]N[/math] рёберно-простыми путями.

Добавим в граф [math]N[/math] рёбер, соединив попарно вершины, имеющие нечётные степени, и получим связный граф [math]G',[/math] все вершины которого имеют чётную степень. Такой граф удовлетворяет критерию эйлеровости и содержит эйлеров цикл. Рассмотрим этот цикл и удалим из него [math]N[/math] добавленных ребер [math]G' \backslash G.[/math] Цикл распадётся на [math]N[/math] путей, которые являются простыми, так как рассматриваемый цикл эйлеров, и покрывают весь граф, поэтому полученное разбиение является искомым.
[math]\triangleleft[/math]

См. также

Источники информации

  • Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6