Изменения

Перейти к: навигация, поиск

Получение номера по объекту

3716 байт добавлено, 21:58, 10 июня 2021
Исправил опечатку с $$
== Описание алгоритма ==
Номер данного [[Комбинаторные объекты|комбинаторного объекта]] равен количеству меньших в [[Лексикографический порядок|лексикографическом порядке]] комбинаторных объектов (нумерацию ведём с <tex>0</tex>). Все объекты меньшие данного можно разбить на непересекающиеся группы по длине совпадающего префикса. Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины <tex>i</tex> совпадает, а <tex>i+1</tex> элемент лексикографически меньше <tex>(i+1)</tex>-го в данном объекте (<tex>i = 0..n-1</tex>).
Следующий алгоритм вычисляет эту сумму:
*<tex>\mathtt{numOfObject}</tex> {{---}} искомый номер комбинаторного объекта,
'''int''' object2num(a: '''list<A>'''):
numOfObject = 0
'''for''' i = 1 '''to''' n <font color=green>// перебираем элементы комбинаторного объекта</font>
'''for''' j = 1 '''to''' a[i] - 1 <font color=green>// перебираем элементы, в лексикографическом порядке меньшие рассматриваемого</font>
'''if''' элемент <tex>j</tex> можно поставить на <tex>i</tex>-e место
== Сочетания ==
Рассмотрим алгоритм получения номера в лексикографическом порядке данного сочетания из <tex>n</tex> по <tex>k</tex>. Как известно, количество сочетаний из <tex>n</tex> по <tex>k</tex> обозначается как <tex dpi=140>\binom{n}{k}</tex>. Тогда число сочетаний, в которых на позиции <tex>1</tex> стоит значение <tex>val_1</tex>, равно <tex dpi=140>$$\sum\limits^{val_1-1}_{i=1} {\binom{n-i}{k-1}}$$</tex>; число сочетаний, в которых на позиции <tex>2</tex> стоит значение <tex>val_2</tex>, равно <tex dpi=140>$$\sum\limits^{val_2-1}_{i=val_1+1} {\binom{n-i}{k-2}}$$</tex>. Аналогично продолжаем по следующим позициям:
*<tex>\mathtt{numOfChoose}</tex> {{---}} искомый номер сочетания,
*<tex>\mathtt{C[n][k]}</tex> {{---}} количество сочетаний из <tex>n</tex> по <tex>k</tex>, <tex>\mathtt{C[n][0] = 1}</tex>,
numOfChoose = 0
'''for''' i = 1 '''to''' K
'''for''' i j = choose[i - 1] + 1 '''to''' choose[i] - 1
numOfChoose += C[N - j][K - i]
'''return''' numOfChoose
Асимптотика алгоритма {{---}} <tex>O(K \cdot N) </tex> и <tex>O(K \cdot N) </tex> для предподсчёта.
 
== Разбиение на слагаемые ==
Рассмотрим алгоритм получения номера, в лексикографическом порядке, по данному разбиению на слагаемые числа <tex>N</tex>. Нужно помнить о том, что разбиения, отличающиеся только порядком слагаемых, считаются одинаковыми. Из всех разбиений, получаемых перестановками слагаемых, выберем то, где слагаемые упорядочены лексикографически, и будем строить его.
 
*<tex>\mathtt{numOfPart}</tex> {{---}} искомый номер разбиения
*<tex>\mathtt{last}</tex> {{---}} последнее поставленное число в разбиении.
*<tex>\mathtt{sum}</tex> {{---}} сумма, которую мы уже поставили.
*<tex>\mathtt{part[1 \ldots N]}</tex> {{---}} данное разбиение
*<tex>\mathtt{d[i][j]}</tex> {{---}} количество разбиений числа <tex>i</tex> на слагаемые, где каждое слагаемое <tex>\geqslant j</tex>.
 
Пересчитывать <tex>\mathtt{d[i][j]}</tex> будем по возрастанию <tex>i</tex>, а при равенстве <tex>i</tex> {{---}} по убыванию <tex>j</tex>.
 
Разбиение числа, в котором каждое слагаемое <tex> \geqslant j</tex> может либо содержать слагаемое <tex>j</tex> (таких разбиений <tex>\mathtt{d[i - j][j]}</tex>), либо не содержать (таких разбиений <tex>\mathtt{d[i][j + 1]}</tex>).
 
Получаем рекуррентное соотношение для подсчёта <tex>d</tex>:
 
<p>
<tex dpi = "145">d[i][j] =
\left \{\begin{array}{ll} 1, & i = j, \\ 0, & i < j \\ d[i][j + 1] + d[i - j][j], & i > j \end{array} \right.
</tex>
</p>
 
 
'''int''' part2num(part: '''list<int>'''):
numOfPart = 0, last = 0, sum = 0
'''for''' i = 1 '''to''' part.size
'''for''' j = last '''to''' part[i] - 1 <font color=green>// перебираем все элементы, лексикографически меньшие текущего, но не меньшие предыдущего</font>
numOfPart += d[N - sum - j][j] <font color=green>// прибавляем количество перестановок, которые могли начинаться с <tex>j</tex></font>
sum += part[i] <font color=green>// увеличиваем уже поставленную сумму</font>
last = part[i] <font color=green>// обновляем последний поставленный элемент </font>
'''return''' numOfPart <font color=green>// возвращаем ответ</font>
 
Стоит отметить, что количество итераций вложенного цикла не более, чем <tex>N</tex>, так как всего количество возможных слагаемых {{---}} <tex>N</tex>, и ни какое из них цикл не обработает дважды, поскольку каждый раз начинает с <tex>last</tex>, которое больше чем любое из обработанных чисел. Поэтому асимптотика алгоритма {{---}} <tex>O(N)</tex>.
 
Асимптотика алгоритма {{---}} <tex> O (N)</tex> и <tex>O(N^2)</tex> на предподсчёт.
== См. также ==
Анонимный участник

Навигация