Получение следующего объекта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Пример работы)
(Специализация алгоритма для генерации следующего разбиения на подмножества)
 
(не показаны 224 промежуточные версии 27 участников)
Строка 1: Строка 1:
 +
 
== Алгоритм ==
 
== Алгоритм ==
 
{{Определение|definition= '''Получение следующего объекта''' {{---}} это нахождение объекта, следующего за данным в [[Лексикографический порядок|лексикографическом порядке]].
 
{{Определение|definition= '''Получение следующего объекта''' {{---}} это нахождение объекта, следующего за данным в [[Лексикографический порядок|лексикографическом порядке]].
 
}}
 
}}
Пусть дан объект <tex>P</tex>. Назовем объект <tex>Q</tex> следующим, если <tex>P < Q</tex> и не найдется такого <tex>R</tex>, что <tex>P < R < Q</tex>.
+
Объект <tex>Q</tex> называется следующим за <tex>P</tex>, если <tex>P < Q</tex> и не найдется такого <tex>R</tex>, что <tex>P < R < Q</tex>.
  
 
Отсюда понятен алгоритм:
 
Отсюда понятен алгоритм:
* Находим минимальный суффикс в объекте <tex>P</tex>, который можно увеличить, не меняя префикс
+
* находим суффикс минимальной длины, который можно изменить без изменения префикса текущего объекта <tex>P</tex>,
* К префиксу дописываем минимальный возможный элемент (чтобы было выполнено правило <tex>P < Q</tex>)
+
* к оставшейся части дописываем минимальный возможный элемент (чтобы было выполнено правило <tex>P < Q</tex>),
* Дописываем минимальный возможный хвост
+
* дописываем минимальный возможный хвост.
 +
По построению получаем, что <tex>Q</tex> {{---}} минимально возможный.
  
 
== Специализация алгоритма для генерации следующего битового вектора ==
 
== Специализация алгоритма для генерации следующего битового вектора ==
Двигаемся справа налево по элементам объекта, пока не найдем элемент 0. Заменим его на 1, а все элементы справа на нули.
+
* Находим минимальный суффикс, в котором есть <tex>0</tex>, его можно увеличить, не меняя оставшейся части
<code>
+
* Вместо <tex>0</tex> записываем <tex>1</tex>
  bool next_vec(vector<int> &a) {
+
* Дописываем минимально возможный хвост из нулей
    int n = a.size();
+
  '''int[]''' nextVector('''int[]''' a): <font color=green>// <tex>n</tex> {{---}} длина вектора</font>
    int pos = n - 1;
+
  '''while''' (n >= 0) '''and''' (a[n] != 0)
     
+
      a[n] = 0
    while (pos != -1 && a[pos] == 1) --pos;
+
      n--
    if (pos == -1) return false;
+
  '''if''' n == -1
+
    '''return''' ''null''
    a[pos] = 1;
+
  a[n] = 1
    while (++pos < n) a[pos] = 0;
+
  '''return''' a
    return true;
+
Приведённый алгоритм эквивалентен прибавлению единицы к битовому вектору.
}
 
</code>
 
 
=== Пример работы ===
 
=== Пример работы ===
{| border="1"
+
{| class="wikitable" border = 1
|0||1||style="background:#FFCC00"|0||1||1||исходный битовый вектор
+
|0||1||0||1||style="background:#FFCC00"|1||исходный битовый вектор
 
|-
 
|-
| || ||^|| || ||находим элемент 0 (самый правый)
+
| || || || ||^|| начинаем идти с конца
 
|-
 
|-
|0||1||style="background:#FFCC00"|1||1||1||меняем его на 1
+
|0||1||0||style="background:#FFCC00"|0||style="background:#FFCC00"|0|| пока элементы равны 1, заменяем их на 0
 
|-
 
|-
|0||1||1||style="background:#FFCC00"|0||style="background:#FFCC00"|0||меняем элементы правее на нули
+
|0||1||style="background:#FFCC00"|1||0||0|| меняем первый не удовлетворяющий условию цикла элемент на 1
 
|-
 
|-
 
|'''0'''||'''1'''||'''1'''||'''0'''||'''0'''||следующий битовый вектор
 
|'''0'''||'''1'''||'''1'''||'''0'''||'''0'''||следующий битовый вектор
Строка 38: Строка 38:
  
 
== Специализация алгоритма для генерации следующей перестановки ==
 
== Специализация алгоритма для генерации следующей перестановки ==
Двигаемся справа налево по элементам объекта, пока не найдем элемент, нарушающий убывающую последовательность. Обменяем его с минимальным элементом, большим нашего, стоящим правее. Далее перевернем правую часть.
+
* Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример)
<code>
+
* Меняем его с минимальным элементом, большим нашего, стоящим правее
  bool next_permutation(vector<int> &a) {
+
* Перевернем правую часть
    int n = a.size();
+
 
    int pos = n - 2;
+
  '''int[]''' nextPermutation('''int[]''' a): <font color=green>// <tex>n</tex> {{---}} длина перестановки</font>
   
+
  '''for''' i = n - 2 '''downto''' 0
     while (pos != -1 && a[pos] > a[pos + 1]) --pos;
+
     '''if''' a[i] < a[i + 1]
    if (pos == -1) return false;  
+
      min = i + 1;
   
+
      '''for''' j = i + 1 '''to''' n - 1
    int k = n - 1;
+
        '''if''' (a[j] < a[min]) '''and''' (a[j] > a[i])
    while (a[pos] > a[k]) --k;
+
          min = j
    swap(a[pos], a[k]);
+
      swap(a[i], a[min])
   
+
      reverse(a, i + 1, n - 1)
    int l = pos + 1, r = n - 1;
+
      '''return''' a
    while (l < r) swap(a[l++], a[r--]);
+
  '''return''' ''null''
    return true;
+
 
}
 
</code>
 
 
=== Пример работы ===
 
=== Пример работы ===
{| border="1"
+
{| class="wikitable" border = 1
 
|1||3||style="background:#FFCC00"|2||5||style="background:#FFCC00"|4||исходная перестановка
 
|1||3||style="background:#FFCC00"|2||5||style="background:#FFCC00"|4||исходная перестановка
 
|-
 
|-
Строка 71: Строка 69:
 
|}
 
|}
  
== Ссылки ==
+
== Специализация алгоритма для генерации следующей мультиперестановки ==
 +
* Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример).
 +
* Меняем его с минимальным элементом, большим нашего, стоящим правее.
 +
* Переворачиваем правую часть.
 +
'''int[]''' nextMultiperm('''int[]''' b):  <font color=green>// <tex>n</tex> {{---}} длина мультиперестановки</font>
 +
    i = n - 2
 +
    '''while''' (i >= 0) '''and''' (b[i] >= b[i + 1])
 +
      i--
 +
    '''if''' i >= 0
 +
      j = i + 1
 +
      '''while''' (j < n - 1) '''and''' (b[j + 1] > b[i])
 +
        j++
 +
      swap(b[i] , b[j])
 +
      reverse(b, i + 1, n - 1)
 +
      '''return''' b
 +
    '''else'''
 +
      '''return''' ''null''
 +
 
 +
=== Пример работы ===
 +
{| class="wikitable" border = 1
 +
|1||2||3||1||style="background:#FFCC00"|2||style="background:#FFCC00"|3||Исходная перестановка.
 +
|-
 +
| || || || ||^|| ||Находим элемент, нарушающий убывающую последовательность.
 +
|-
 +
| || || || || ||^||Минимальный элемент больше нашего.
 +
|-
 +
|1||2||3||1||style="background:#FFCC00"|3||style="background:#FFCC00"|2||Меняем их местами.
 +
|-
 +
|'''1'''||'''2'''||'''3'''||'''1'''||'''3'''||'''2'''||Следующая мультиперестановка.
 +
|}
 +
 
 +
== Специализация алгоритма для генерации следующего сочетания ==
 +
 
 +
* Добавим в конец массива с сочетанием <tex>N+1</tex> – максимальный элемент.
 +
* Пойдём справа налево. Будем искать номер элемента, который отличается от предыдущего на <tex>2</tex> и больше.
 +
* Увеличим найденный элемент на <tex>1</tex>, и допишем в конец минимально возможный хвост, если такого элемента нет – на вход было дано последнее сочетание.
 +
'''int[]''' nextChoose('''int[]''' a, '''int''' n, '''int''' k): <font color=green>// <tex>n,k </tex> {{---}} параметры сочетания</font>
 +
  '''for''' i = 0 '''to''' k - 1
 +
    b[i] = a[i]
 +
  b[k] = n + 1
 +
  i = k - 1
 +
  '''while''' (i >= 0) '''and''' (b[i + 1] - b[i] < 2)
 +
    i--
 +
  '''if''' i >= 0
 +
      b[i]++
 +
      '''for''' j = i + 1 '''to''' k - 1
 +
        b[j] = b[j - 1] + 1
 +
      '''for''' i = 0 '''to''' k - 1
 +
        a[i] = b[i]
 +
      '''return''' a
 +
  '''else'''
 +
    '''return''' ''null''
 +
 
 +
=== Пример работы ===
 +
{| class="wikitable" border = 1
 +
|1||2||5||6||style="background:#FFCC00"|'''7'''||Дописываем 7 в конец сочетания.
 +
|-
 +
|1||style="background:#FFCC00"|2||5||6||'''7'''||
 +
|-
 +
| ||^|| || || ||Находим элемент i, a[i + 1] - a[ i ] >= 2
 +
|-
 +
|1||style="background:#FFCC00"|3||5||6||'''7'''||Увеличиваем его на 1.
 +
|-
 +
|1||3||style="background:#FFCC00"|4||style="background:#FFCC00"|5||style="background:#FFCC00"|'''6'''||Дописываем минимальный хвост.
 +
|-
 +
|'''1'''||'''3'''||'''4'''||'''5'''||''' '''||Следующее сочетание.
 +
|}
 +
 
 +
== Специализация алгоритма для генерации следующего разбиения на слагаемые ==
 +
Рассматриваемый алгоритм находит следующее [[комбинаторные объекты|разбиение на слагаемые]], при этом разбиение упорядоченно по возрастанию.
 +
* Увеличим предпоследнее слагаемое на <tex>1</tex>, уменьшим последнее слагаемое на <tex>1</tex>.
 +
** Если предпоследнее слагаемое стало больше последнего, то увеличиваем предпоследнее слагаемое на величину последнего.
 +
** Если предпоследнее слагаемое умноженное на 2 меньше последнего, то разбиваем последнее слагаемое <tex>s</tex> на два слагаемых <tex>a</tex> и <tex>b</tex> таких, что <tex>a</tex> равно предпоследнему слагаемому, а <tex>b = s - a</tex>. Повторяем этот процесс, пока разбиение остается корректным, то есть предпоследнее слагаемое хотя бы в два раза меньше последнего.
 +
 
 +
<code>
 +
<font color=green>// <tex>b</tex> {{---}} список, содержащий разбиение данного числа <tex>b.size</tex>{{---}} его размер </font>
 +
'''list<int>'''  nextPartition('''list<int>''' b):
 +
    b[b.size - 1]--
 +
    b[b.size - 2]++
 +
    '''if''' b[b.size - 2] > b[b.size - 1]
 +
      b[b.size - 2] += b[b.size - 1]
 +
      b.remove(b.size - 1)
 +
    '''else'''
 +
      '''while''' b[b.size - 2] * 2 <= b[b.size - 1]
 +
        b.add(b[b.size - 1] - b[b.size - 2])
 +
        b[b.size - 2] = b[b.size - 3]
 +
    '''return''' b
 +
</code>
 +
 
 +
=== Пример работы ===
 +
{| class="wikitable" border = 1
 +
|1||style="background:#FFCC00"|1||style="background:#FFCC00"|7|| || ||Прибавим 1 + 1, вычтем 7 - 1.
 +
|-
 +
|1||style="background:#FFCC00"|2||style="background:#FFCC00"|6|| || ||Проверяем: 2 < 6, значит разбиваем 6 пока оно не станет меньше 4
 +
|-
 +
|1||2||style="background:#FFCC00"|2||style="background:#FFCC00"|4|| ||
 +
|-
 +
|1||2||2||style="background:#FFCC00"|2||style="background:#FFCC00"|2||
 +
|-
 +
|'''1'''||'''2'''||'''2'''||'''2'''||'''2'''||Следующее разбиение на слагаемые числа 9.
 +
|}
 +
 
 +
{| class="wikitable" border = 1
 +
|1||style="background:#FFCC00"|4||style="background:#FFCC00"|5||Прибавим 4 + 1, вычтем 5 - 1.
 +
|-
 +
|1||style="background:#FFCC00"|5||style="background:#FFCC00"|4||Проверяем: 5 > 4, значит прибавим к 5 + 4.
 +
|-
 +
|1||9||style="background:#FFCC00"|4||Удалим последний элемент.
 +
|-
 +
|'''1'''||'''9'''||||Следующее разбиение на слагаемые числа 10.
 +
|}
 +
 
 +
== См.также ==
 +
* [[Получение предыдущего объекта]]
 +
* [[Получение объекта по номеру]]
 +
* [[Получение номера по объекту]]
 +
 
 +
== Источники информации ==
 +
 
 +
* [http://rain.ifmo.ru/cat/view.php/vis/combinations/permutations-2000 Визуализатор перестановок]
 +
* [http://cppalgo.blogspot.com/2011/02/episode-2.html Пример компактного кода для перестановок (С++)]
  
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Комбинаторика]]
 
[[Категория: Комбинаторика]]

Текущая версия на 23:35, 8 января 2024

Алгоритм

Определение:
Получение следующего объекта — это нахождение объекта, следующего за данным в лексикографическом порядке.

Объект [math]Q[/math] называется следующим за [math]P[/math], если [math]P \lt Q[/math] и не найдется такого [math]R[/math], что [math]P \lt R \lt Q[/math].

Отсюда понятен алгоритм:

  • находим суффикс минимальной длины, который можно изменить без изменения префикса текущего объекта [math]P[/math],
  • к оставшейся части дописываем минимальный возможный элемент (чтобы было выполнено правило [math]P \lt Q[/math]),
  • дописываем минимальный возможный хвост.

По построению получаем, что [math]Q[/math] — минимально возможный.

Специализация алгоритма для генерации следующего битового вектора

  • Находим минимальный суффикс, в котором есть [math]0[/math], его можно увеличить, не меняя оставшейся части
  • Вместо [math]0[/math] записываем [math]1[/math]
  • Дописываем минимально возможный хвост из нулей
int[] nextVector(int[] a): // [math]n[/math] — длина вектора
  while (n >= 0) and (a[n] != 0)
      a[n] = 0
      n--
  if n == -1
    return null
  a[n] = 1
  return a

Приведённый алгоритм эквивалентен прибавлению единицы к битовому вектору.

Пример работы

0 1 0 1 1 исходный битовый вектор
^ начинаем идти с конца
0 1 0 0 0 пока элементы равны 1, заменяем их на 0
0 1 1 0 0 меняем первый не удовлетворяющий условию цикла элемент на 1
0 1 1 0 0 следующий битовый вектор

Специализация алгоритма для генерации следующей перестановки

  • Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример)
  • Меняем его с минимальным элементом, большим нашего, стоящим правее
  • Перевернем правую часть
int[] nextPermutation(int[] a): // [math]n[/math] — длина перестановки
  for i = n - 2 downto 0
    if a[i] < a[i + 1]
      min = i + 1;
      for j = i + 1 to n - 1
        if (a[j] < a[min]) and (a[j] > a[i])
          min = j
      swap(a[i], a[min])
      reverse(a, i + 1, n - 1)
      return a
  return null 

Пример работы

1 3 2 5 4 исходная перестановка
^ находим элемент, нарушающий убывающую последовательность
^ минимальный элемент больше нашего
1 3 4 5 2 меняем их местами
1 3 4 2 5 разворачивам правую часть
1 3 4 2 5 следующая перестановка

Специализация алгоритма для генерации следующей мультиперестановки

  • Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример).
  • Меняем его с минимальным элементом, большим нашего, стоящим правее.
  • Переворачиваем правую часть.
int[] nextMultiperm(int[] b):  // [math]n[/math] — длина мультиперестановки
    i = n - 2
    while (i >= 0) and (b[i] >= b[i + 1]) 
      i--
    if i >= 0 
      j = i + 1
      while (j < n - 1) and (b[j + 1] > b[i]) 
        j++
      swap(b[i] , b[j])
      reverse(b, i + 1, n - 1)
      return b
    else
      return null

Пример работы

1 2 3 1 2 3 Исходная перестановка.
^ Находим элемент, нарушающий убывающую последовательность.
^ Минимальный элемент больше нашего.
1 2 3 1 3 2 Меняем их местами.
1 2 3 1 3 2 Следующая мультиперестановка.

Специализация алгоритма для генерации следующего сочетания

  • Добавим в конец массива с сочетанием [math]N+1[/math] – максимальный элемент.
  • Пойдём справа налево. Будем искать номер элемента, который отличается от предыдущего на [math]2[/math] и больше.
  • Увеличим найденный элемент на [math]1[/math], и допишем в конец минимально возможный хвост, если такого элемента нет – на вход было дано последнее сочетание.
int[] nextChoose(int[] a, int n, int k): // [math]n,k [/math] — параметры сочетания
  for i = 0 to k - 1 
    b[i] = a[i]
  b[k] = n + 1
  i = k - 1
  while (i >= 0) and (b[i + 1] - b[i] < 2) 
    i--
  if i >= 0 
     b[i]++
     for j = i + 1 to k - 1 
       b[j] = b[j - 1] + 1
     for i = 0 to k - 1 
       a[i] = b[i]
     return a
  else
    return null

Пример работы

1 2 5 6 7 Дописываем 7 в конец сочетания.
1 2 5 6 7
^ Находим элемент i, a[i + 1] - a[ i ] >= 2
1 3 5 6 7 Увеличиваем его на 1.
1 3 4 5 6 Дописываем минимальный хвост.
1 3 4 5 Следующее сочетание.

Специализация алгоритма для генерации следующего разбиения на слагаемые

Рассматриваемый алгоритм находит следующее разбиение на слагаемые, при этом разбиение упорядоченно по возрастанию.

  • Увеличим предпоследнее слагаемое на [math]1[/math], уменьшим последнее слагаемое на [math]1[/math].
    • Если предпоследнее слагаемое стало больше последнего, то увеличиваем предпоследнее слагаемое на величину последнего.
    • Если предпоследнее слагаемое умноженное на 2 меньше последнего, то разбиваем последнее слагаемое [math]s[/math] на два слагаемых [math]a[/math] и [math]b[/math] таких, что [math]a[/math] равно предпоследнему слагаемому, а [math]b = s - a[/math]. Повторяем этот процесс, пока разбиение остается корректным, то есть предпоследнее слагаемое хотя бы в два раза меньше последнего.

// [math]b[/math] — список, содержащий разбиение данного числа [math]b.size[/math]— его размер 
list<int>  nextPartition(list<int> b): 
   b[b.size - 1]--
   b[b.size - 2]++
   if b[b.size - 2] > b[b.size - 1] 
      b[b.size - 2] += b[b.size - 1]
      b.remove(b.size - 1)
   else
     while b[b.size - 2] * 2 <= b[b.size - 1] 
       b.add(b[b.size - 1] - b[b.size - 2])
       b[b.size - 2] = b[b.size - 3]
   return b

Пример работы

1 1 7 Прибавим 1 + 1, вычтем 7 - 1.
1 2 6 Проверяем: 2 < 6, значит разбиваем 6 пока оно не станет меньше 4
1 2 2 4
1 2 2 2 2
1 2 2 2 2 Следующее разбиение на слагаемые числа 9.
1 4 5 Прибавим 4 + 1, вычтем 5 - 1.
1 5 4 Проверяем: 5 > 4, значит прибавим к 5 + 4.
1 9 4 Удалим последний элемент.
1 9 Следующее разбиение на слагаемые числа 10.

См.также

Источники информации