Редактирование: Построение по НКА эквивалентного ДКА, алгоритм Томпсона

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 24: Строка 24:
 
Построенный ДКА эквивалентен данному НКА.
 
Построенный ДКА эквивалентен данному НКА.
 
|proof=
 
|proof=
#Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. Заметим, что <tex>\forall q \in q_d, \forall c \in \Sigma, \forall p \in \delta(q, c): p \in \delta_d(q_d, c)</tex>. Рассмотрим слово <tex>w=w_1 \dots w_m</tex>, которое принимает автомат НКА: <tex>\langle s, w_1w_2 \dots w_m \rangle \vdash \langle u_1, w_2 \dots w_m \rangle \vdash \langle u_m, \varepsilon \rangle, u_m \in T</tex>. Проверим, что построенный ДКА тоже принимает это слово. Заметим, что <tex>s \in s_d</tex>, а, значит, исходя из нашего наблюдения, мы получаем, что <tex>u_1 \in {u_d}_1</tex>, где <tex>{u_d}_1 = \delta_d(s, w_1)</tex>. Далее, несложно заметить, что <tex>\forall i \leqslant m : u_i \in {u_d}_i</tex>, где <tex>\langle s_d, w_1w_2 \dots w_m \rangle \vdash \langle {u_d}_1, w_2 \dots w_m \rangle \vdash \langle {u_d}_i, w_{i + 1} \dots w_m\rangle</tex>. Таким образом, <tex>u_m \in {u_d}_m</tex>, а из определения терминальных состояний в построенном ДКА мы получаем, что <tex>{u_d}_m \in T_d</tex>, то есть наш ДКА тоже принимает cлово <tex>w</tex>.
+
#Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. Заметим, что <tex>\forall q \in q_d, \forall c \in \Sigma, \forall p \in \delta(q, c): p \in \delta_d(q_d, c)</tex>. Рассмотрим слово <tex>w=w_1...w_m</tex>, которое принимает автомат НКА: <tex>\langle s, w_1w_2 \dots w_m \rangle \vdash \langle u_1, w_2 \dots w_m \rangle \vdash \langle u_m, \varepsilon \rangle, u_m \in T</tex>. Проверим, что построенный ДКА тоже принимает это слово. Заметим, что <tex>s \in s_d</tex>, а, значит, исходя из нашего наблюдения, мы получаем, что <tex>u_1 \in {u_d}_1</tex>, где <tex>{u_d}_1 = \delta_d(s, w_1)</tex>. Далее, несложно заметить, что <tex>\forall i \leqslant m : u_i \in {u_d}_i</tex>, где <tex>\langle s_d, w_1w_2 \dots w_m \rangle \vdash \langle {u_d}_1, w_2 \dots w_m \rangle \vdash \langle {u_d}_i, w_{i + 1} \dots w_m\rangle</tex>. Таким образом, <tex>u_m \in {u_d}_m</tex>, а из определения терминальных состояний в построенном ДКА мы получаем, что <tex>{u_d}_m \in T_d</tex>, то есть наш ДКА тоже принимает cлово <tex>w</tex>.
 
#Докажем, что любое слово, которое принимает построенный ДКА, принимает и НКА. Сначала сделаем наблюдение, что если <tex>q_d=\{q\}</tex>, и мы из него достигли по строке <tex>S</tex> какого-то состояния <tex>p_d</tex>, то <tex>\forall p \in p_d</tex> существует путь из <tex>q</tex> в <tex>p</tex> в НКА по строке <tex>S</tex>. Рассмотрим слово <tex>w=w_1 \dots w_m</tex>, которое принимает автомат ДКА: <tex>\langle s_d, w_1w_2 \dots w_m \rangle \vdash \langle {u_d}_1, w_2 \dots w_m \rangle \vdash \langle {u_d}_m, \varepsilon \rangle, {u_d}_m \in T_d</tex>. Проверим, что НКА тоже принимает это слово. Так как <tex>s_d = \{s\}</tex>, и мы из <tex>s_d</tex> достигли <tex>{u_d}_m \in T_d</tex>, возьмём любое терминальное состояние <tex>u_m \in {u_d}_m</tex>. По нашему наблюдению в НКА есть путь из <tex>s</tex> в <tex>u_m</tex> по строке <tex>w</tex>, а, значит, НКА принимает это слово.  
 
#Докажем, что любое слово, которое принимает построенный ДКА, принимает и НКА. Сначала сделаем наблюдение, что если <tex>q_d=\{q\}</tex>, и мы из него достигли по строке <tex>S</tex> какого-то состояния <tex>p_d</tex>, то <tex>\forall p \in p_d</tex> существует путь из <tex>q</tex> в <tex>p</tex> в НКА по строке <tex>S</tex>. Рассмотрим слово <tex>w=w_1 \dots w_m</tex>, которое принимает автомат ДКА: <tex>\langle s_d, w_1w_2 \dots w_m \rangle \vdash \langle {u_d}_1, w_2 \dots w_m \rangle \vdash \langle {u_d}_m, \varepsilon \rangle, {u_d}_m \in T_d</tex>. Проверим, что НКА тоже принимает это слово. Так как <tex>s_d = \{s\}</tex>, и мы из <tex>s_d</tex> достигли <tex>{u_d}_m \in T_d</tex>, возьмём любое терминальное состояние <tex>u_m \in {u_d}_m</tex>. По нашему наблюдению в НКА есть путь из <tex>s</tex> в <tex>u_m</tex> по строке <tex>w</tex>, а, значит, НКА принимает это слово.  
 
Таким образом, множества слов, допускаемых ДКА и НКА, совпадают, то есть они эквивалентны.
 
Таким образом, множества слов, допускаемых ДКА и НКА, совпадают, то есть они эквивалентны.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: