Правило Лаулера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Источники информации)
Строка 1: Строка 1:
 
Рассмотрим задачу <tex>1 \mid prec \mid f_{max}</tex>.
 
Рассмотрим задачу <tex>1 \mid prec \mid f_{max}</tex>.
 
{{Задача
 
{{Задача
|definition = <wikitex>Дано $n$ работ, которые надо выполнить на одной машине, причем $i$-ая работа выполняется $p_i$ времени. Для каждой работы задана монотонно неубывающая функция $f_i$. Также между работами заданы отношения в виде ориентированного графа без циклов: если существует ребро $a \to b$, то работа $a$ должна завершиться до начала выполнения работы $b$. Необходимо построить такое расписание, чтобы величина $f_{max} = \max\limits_{j=1}^{n}{f_j(C_j)}$, где $C_j$ {{---}} время окончания выполнения $j$-ой работы, была минимальна.</wikitex>
+
|definition = <wikitex>Дано $n$ работ, которые надо выполнить на одной машине, причем $i$-ая работа выполняется $p_i$ времени. Для каждой работы задана монотонно неубывающая функция $f_i$. Также между работами заданы отношения в виде ориентированного графа без циклов: если существует ребро $a \to b$, то работа $a$ должна завершиться до начала выполнения работы $b$. Необходимо построить такое расписание, чтобы величина $f_{max} = \max\limits_{j=1..n}{f_j(C_j)}$, где $C_j$ {{---}} время окончания выполнения $j$-ой работы, была минимальна.</wikitex>
 
}}
 
}}
 
<wikitex>Задача $1 \mid \mid f_{max}$ является частным случаем вышеописанной задачи. Здесь нет зависимостей между работами, то есть граф состоит из $n$ вершин и не содержит ребер. Очевидно, решив задачу в общем виде, мы также решим и эту.</wikitex>
 
<wikitex>Задача $1 \mid \mid f_{max}$ является частным случаем вышеописанной задачи. Здесь нет зависимостей между работами, то есть граф состоит из $n$ вершин и не содержит ребер. Очевидно, решив задачу в общем виде, мы также решим и эту.</wikitex>
Строка 24: Строка 24:
 
   find job j in S with N[j] == 0 and minimal f[j](P)-value
 
   find job j in S with N[j] == 0 and minimal f[j](P)-value
 
   S = S \ {j}
 
   S = S \ {j}
   N[i] = <tex>\infty</tex>
+
   N[j] = <tex>\infty</tex>
 
   schedule[k] = j
 
   schedule[k] = j
 
   P -= p[j]
 
   P -= p[j]
Строка 49: Строка 49:
  
 
==Источники информации==
 
==Источники информации==
* Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 62 стр. {{---}} ISBN 978-3-540-69515-8
+
* Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 62-63 стр. {{---}} ISBN 978-3-540-69515-8
  
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория: Теория расписаний]]
 
[[Категория: Теория расписаний]]

Версия 21:25, 8 июня 2015

Рассмотрим задачу [math]1 \mid prec \mid f_{max}[/math].

Задача:
<wikitex>Дано $n$ работ, которые надо выполнить на одной машине, причем $i$-ая работа выполняется $p_i$ времени. Для каждой работы задана монотонно неубывающая функция $f_i$. Также между работами заданы отношения в виде ориентированного графа без циклов: если существует ребро $a \to b$, то работа $a$ должна завершиться до начала выполнения работы $b$. Необходимо построить такое расписание, чтобы величина $f_{max} = \max\limits_{j=1..n}{f_j(C_j)}$, где $C_j$ — время окончания выполнения $j$-ой работы, была минимальна.</wikitex>

<wikitex>Задача $1 \mid \mid f_{max}$ является частным случаем вышеописанной задачи. Здесь нет зависимостей между работами, то есть граф состоит из $n$ вершин и не содержит ребер. Очевидно, решив задачу в общем виде, мы также решим и эту.</wikitex>

Правило Лаулера

Формулировка

<wikitex>Существует простой жадный алгоритм решения этой задачи, открытый Лаулером. Он заключается в том, чтобы строить расписание с конца.

Пусть $N = \{1, \dots, n\}$ — множество работ, и $S \subseteq N$ — множество работ, которых ещё нет в расписании. Пусть также $p(S) = \sum\limits_{j \in S}{p_j}$. Тогда правило Лаулера можно сформулировать следующим образом: взять работу $j \in S$, у которой нет детей в графе зависимостей и имеющую минимальное значение $f_j(p(S))$, и сделать ее последней среди работ из $S$. </wikitex>

Реализация

  • [math]A = (a_{ij})[/math] — матрица смежности графа, где [math]a_{ij} = 1[/math] тогда, и только тогда, когда существует ребро [math]i \to j[/math].
  • [math]N(i)[/math] — число детей вершины [math]i[/math].
  • [math]\mathtt{schedule}[/math] — расписание.
for i = 1 to n
  for j = 1 to n
     N[i] += A[i][j]
S = {1,...,n}
P = sum(p[i])
for k = n downto 1
  find job j in S with N[j] == 0 and minimal f[j](P)-value
  S = S \ {j}
  N[j] = [math]\infty[/math]
  schedule[k] = j
  P -= p[j]
  for i = 1 to n
    if A[i][j] == 1
      N[i]--

Сложность этого алгоритма [math]O(n^2)[/math].

Доказательство

Утверждение:
Вышеописанный алгоритм строит оптимальное расписание для задачи [math]1 \mid prec \mid f_{max} [/math].
[math]\triangleright[/math]

<wikitex>Пусть алгоритм построил расписание, в котором работы идут в порядке $1,2,\dots,n$. Также пусть $\sigma : \sigma(1), \dots, \sigma(n)$ — оптимальное расписание. Предположим, что $\sigma(i) = i$ для $i = n, n-1, \dots, r$ и $\sigma(r - 1) \ne r-1$, причем $r$ максимальное. Тогда имеем ситуацию, изображенную на рисунке.

1.jpg

Мы можем поставить работу $r - 1$ сразу перед $r$ по построению. Поэтому $r - 1$ и $j$ не имеют наследников в множестве ${1,\dots,r-1}$. Пусть $p_{r-1}$ и $p_j$ есть времена, в которые выполняются работы $r-1$ и $j$. Теперь, если мы поменяем работы $r-1$ и $j$ местами, то ответ не ухудшится. Действительно, $f_j(p_{r-1}) \leqslant f_j(p_j)$ и $f_{r-1}(p_j) \leqslant f_j(p_j)$, а значения соответствующих функций для работ между $r-1$ и $j$ не изменятся, поэтому после перестановки ответ не ухудшится.

</wikitex>
[math]\triangleleft[/math]

См. также

Источники информации

  • Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 62-63 стр. — ISBN 978-3-540-69515-8