Редактирование: Предельный переход в классе измеримых функций
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 1: | Строка 1: | ||
− | + | {{В разработке}} | |
− | == 1 == | + | {{TODO|t=ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕКСТОМ И ИСПРАВИТЬ КОСЯКИ}} |
+ | |||
+ | ==1== | ||
{{Утверждение | {{Утверждение | ||
− | |statement = | + | |statement=Пусть <tex>E</tex> измеримо, <tex>f_n : E \to \mathbb{R}</tex>, <tex>f_n</tex> {{---}} измеримо на <tex>E</tex>, <tex>\forall x \in E : f(x) = \lim\limits_{n\to\infty} f_n(x)</tex> |
− | Пусть <tex>E</tex> измеримо, <tex>f_n : E \to \mathbb{R}</tex>, | + | Тогда <tex>f</tex> тоже измеримо на <tex>E</tex>. |
− | |proof = | + | |proof= |
Выведем это из стандартного факта анализа. | Выведем это из стандартного факта анализа. | ||
− | <tex>a = \lim\limits_{n\to\infty} a_n \ | + | <tex>a = \lim\limits_{n\to\infty} a_n \Rightarrow a = \inf\limits_{n\in \mathbb{N}} \sup \{a_n, a_{n+1}, \ldots\}</tex> |
− | |||
<tex>f(x) = \inf\limits_{n\to\infty} \sup \{f_n(x), f_{n+1}(x), \ldots\}</tex> | <tex>f(x) = \inf\limits_{n\to\infty} \sup \{f_n(x), f_{n+1}(x), \ldots\}</tex> | ||
Строка 19: | Строка 20: | ||
<tex>E(g_n\leq a) = \bigcap\limits_{m = n}^\infty E(f_m\leq a)</tex> | <tex>E(g_n\leq a) = \bigcap\limits_{m = n}^\infty E(f_m\leq a)</tex> | ||
− | Аналогично <tex> | + | Аналогично <tex>inf</tex>. Значит, <tex>f</tex> {{---}} измерима по Лебегу |
}} | }} | ||
Строка 39: | Строка 40: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Пусть заданы функции <tex>f_n, f</tex> на <tex>E</tex>, <tex>E' = \{x | x \in E, \lim\limits_{n\to\infty} f_n(x) \ne f(x)\}</tex>. Если <tex>\mu E' = 0</tex>, то <tex>f_n\to f</tex> | + | Пусть заданы функции <tex>f_n, f</tex> на <tex>E</tex>, <tex>E' = \{x | x \in E, \lim\limits_{n\to\infty} f_n(x) \ne f(x)\}</tex>. Если <tex>\mu E' = 0</tex>, то <tex>f_n\to f</tex> почти всюду на <tex>E</tex>. |
}} | }} | ||
Строка 77: | Строка 78: | ||
}} | }} | ||
− | |||
− | |||
− |