Изменения

Перейти к: навигация, поиск

Предел отображения в метрическом пространстве

412 байт добавлено, 09:35, 16 января 2011
м
Уточнил пару вещей; указал направление дальнейшей доработки статьи.
}}
== Предел сложного отображения =={{TODO| t=привести условие и доказательство теоремы в порядок}}
Если <tex>f</tex> имеет предел, то в ситуации общих МП:
Пусть <tex> (X, \rho) </tex> - МП. <tex> F_1 \cap F_2 = \varnothing </tex>, F_1, F_2 - замкнутые <tex> \Rightarrow \exists G_1, G_2: F_j \in G_j , j = 1, 2; G_1 \cap G_2 = \varnothing </tex>
|proof=
<tex> f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} </tex>. Т.к. <tex> F_1 \cap F_2 = \varnothing </tex> и <tex> F_1, F_2 </tex> - замкнуты, то знаменатель не равен 0. Следовательно, <tex> f(x) </tex> корректна и непрерывна в силу непрерывности <tex> \rho </tex>. При этом: <tex> x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1 </tex>. Рассмотрим на R пару интервалов: <tex> (- \infty; \frac 1 3) </tex> и <tex> (\frac 1 2, + \infty) </tex>. Т.к. <tex> f(x) </tex> неперывна, то прообраз открытого множества - открытое множество(Это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее. Хотя это надо бы еще доказать...).
: <tex> G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) </tex>
: <tex> F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing </tex>, ч.т.д.
Определение: равномерно - непрерывные отображения
{{TODO| t=сделать их, черт возьми!}}
[[Категория:Математический анализ 1 курс]]
689
правок

Навигация