Преобразование MTF — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 40: Строка 40:
 
</code>   
 
</code>   
  
Данный алгоритм работает за <tex>O(N \cdot M)</tex>, где <tex>N</tex> {{---}} размер алфавита, <tex>M</tex> {{---}} длина строки, что не очень быстро. Этот алгоритм можно реализовать за <tex>O(N\log(N+M))</tex>.
+
Данный алгоритм работает за <tex>O(N \cdot M)</tex>, где <tex>M</tex> {{---}} размер алфавита, <tex>N</tex> {{---}} длина строки, что не очень быстро. Этот алгоритм можно реализовать за <tex>O(N\log M)</tex>.
  
== Описание алгоритма за O(N log(N+M)) ==
+
== Описание алгоритма за O(N logM) ==
  
Пусть дан алфавит размером <tex>M</tex> и строка <tex>S</tex> длиной <tex>N</tex>. Заведем массив <tex>\mathtt{used}[1..N+M]</tex> и последние <tex>M</tex> ячеек заполним единицами. Запомним для каждого символа алфавита позицию в нашем массиве. Например, <tex>\mathtt{alphabet}['a'] = N+1</tex>, <tex>\mathtt{alphabet}['b'] = N+2</tex>, ... , <tex>\mathtt{alphabet}['z'] = N+M</tex>.  
+
Для решения будем использовать [[Декартово_дерево | декартово дерево]].
  
При обработке <tex>i</tex>-го символа посчитаем и выпишем сумму на отрезке <tex>[1, \mathtt{alphabet}[S[i]] - 1]</tex>, поменяем значения ячеек <tex>\mathtt{used}[N-i+1]</tex> и <tex>\mathtt{used}[\mathtt{alphabet}[S[i]]]</tex> местами, также стоит поменять значение в ячейке <tex>\mathtt{alphabet}[S[i]]</tex> на <tex>N-i+1</tex>.
+
Пусть дан алфавит размером <tex>M</tex> и строка <tex>S</tex> длиной <tex>N</tex>. Запомним для каждого символа алфавита свой ключ. Изначально <tex>\mathtt{keys}['a'] = 0</tex>, <tex>\mathtt{keys}['b'] = 1</tex>, <tex>\dots</tex> , <tex>\mathtt{keys}['z'] = M-1</tex>. Соединим все вершины в дерево по ключу.  
  
 
<code>
 
<code>
 
  '''list<int>''' mtf(N):
 
  '''list<int>''' mtf(N):
 
     '''list<int>''' result(N)
 
     '''list<int>''' result(N)
     '''list<int>''' used(N+M)
+
     minkey = 0
     '''for''' i = 1 '''to''' M                                      <font color=darkgreen>//Заполняем последние M ячеек единицами</font color=darkgreen>  
+
     '''for''' i = 0 '''to''' N
       used[i+N] = 1
+
      result.append(findanswer(S[i])) <font color=darkgreen>       //Считаем ответ</font color=darkgreen>      
    '''for''' i = 1 '''to''' N
+
       cur = find(keys[S[i]])<font color=darkgreen>                 //Находим вершину в дереве </font color=darkgreen>
      result.append(sum(1, alphabet[S[i]] - 1))       <font color=darkgreen>//Запоминаем ответ</font color=darkgreen>
+
       split(cur.key)     <font color=darkgreen>                   //Вырезаем вершину из дерева</font color=darkgreen>
       swap(used[N-i+1], used[alphabet[S[i]]])         <font color=darkgreen>//Меняем значения</font color=darkgreen>
+
       min_key--          <font color=darkgreen>                  //Уменьшаем минимально-возможный ключ</font color=darkgreen>
       alphabet[S[i]] = N-i+1                          <font color=darkgreen>//Изменяем позицию символа в массиве</font color=darkgreen>
+
      cur.key = minkey    <font color=darkgreen>                   //Ставим ключ в найденной вершине на минимальный</font color=darkgreen>
 +
      merge(cur, tree)        <font color=darkgreen>              //Объединяем нашу вершину и дерево по ключу</font color=darkgreen>
 
     '''return''' result
 
     '''return''' result
 
</code>
 
</code>
  
Функцию <tex>\mathtt{sum}</tex> можно реализовывать по-разному.
+
Функция <tex>\mathtt{findanswer}</tex> считает ответ так: если при спуске из вершины дерева мы должны идти вправо, то прибавляем к ответу количество вершин левого поддерева + 1, иначе ничего не добавляем к ответу.
  
<code>
+
Функции <tex>\mathtt{split}</tex> и <tex>\mathtt{merge}</tex> {{---}} стандартные функции для [[Декартово_дерево|декартова дерева]].
'''int''' sum(left, right)
 
    result = 0
 
    '''for''' i = left '''to''' right
 
      result = result + used[i]
 
    '''return''' result
 
</code>
 
  
Такая реализация работает за <tex>O(right-left)</tex>, общая сложность алгоритма равна <tex>O(N \cdot M)</tex> Но можно находить сумму на отрезке при помощи [[Дерево_отрезков._Построение | дерева отрезков]], что сократит время работы до <tex>O(\log(right-left))</tex>. Итого, общая сложность будет равна <tex>O(N\log(N+M))</tex>
+
<tex>\mathtt{minkey}</tex> {{---}} число, которое меньше любого ключа дерева.
  
 
== Обратное преобразование ==
 
== Обратное преобразование ==
Строка 122: Строка 117:
  
 
В результате сжатия получаем последовательность длиной <tex>16\cdot1 + 2\cdot2 + 3\cdot2 = 26</tex> бит. Стоит заметить, что выигрыш от применения [[Арифметическое кодирование|арифметического кодирования]] для данного примера будет еще значительней.
 
В результате сжатия получаем последовательность длиной <tex>16\cdot1 + 2\cdot2 + 3\cdot2 = 26</tex> бит. Стоит заметить, что выигрыш от применения [[Арифметическое кодирование|арифметического кодирования]] для данного примера будет еще значительней.
 +
 +
== См. также ==
 +
 +
* [[Преобразование_Барроуза-Уиллера]]
 +
* [[Алгоритм_LZW]]
  
 
== Примечания ==
 
== Примечания ==

Версия 22:36, 15 января 2015

Определение:
Преобразование MTF (англ. move-to-front, движение к началу) — алгоритм кодирования, используемый для предварительной обработки данных (обычно потока байтов) перед сжатием, разработанный для улучшения эффективности последующего кодирования.

Описание алгоритма

Изначально каждое возможное значение байта записывается в список (алфавит), в ячейку с номером, равным значению байта, т.е. [math](0, 1, 2, 3, \dots, 255)[/math]. В процессе обработки данных этот список изменяется. По мере поступления очередного символа на выход подается номер элемента, содержащего его значение. После чего этот символ перемещается в начало списка, смещая остальные элементы вправо.

Современные алгоритмы (например, bzip2[1]) перед алгоритмом MTF используют алгоритм BWT, поэтому в качестве примера рассмотрим строку [math]S = BCABAAA[/math], полученную из строки "ABACABA" в результате преобразования Барроуза-Уиллера. Первый символ строки [math]S[/math] 'B' является вторым элементом алфавита "ABC", поэтому на вывод подаётся [math]1[/math]. После перемещения 'B' в начало алфавита тот принимает вид "BAC". Дальнейшая работа алгоритма показана в таблице:

Символ Список Вывод
B ABC 1
C BAC 2
A CBA 2
B ACB 2
A BAC 1
A ABC 0
A ABC 0

Таким образом, результат работы алгоритма: [math]MTF(S) = 1222100[/math].

Вот примерная реализация этого алгоритма. Здесь массив [math]\mathtt{alphabet}[/math] хранит количество символов перед символом [math]S[i][/math], [math]N[/math] — длина строки [math]S[/math].

list<int> mtf(N):
   list<int> result(N)
   for i = 1 to N
      result.append(alphabet[S[i]])
      помещаем символ S[i] в начало алфавита
   return result

Данный алгоритм работает за [math]O(N \cdot M)[/math], где [math]M[/math] — размер алфавита, [math]N[/math] — длина строки, что не очень быстро. Этот алгоритм можно реализовать за [math]O(N\log M)[/math].

Описание алгоритма за O(N logM)

Для решения будем использовать декартово дерево.

Пусть дан алфавит размером [math]M[/math] и строка [math]S[/math] длиной [math]N[/math]. Запомним для каждого символа алфавита свой ключ. Изначально [math]\mathtt{keys}['a'] = 0[/math], [math]\mathtt{keys}['b'] = 1[/math], [math]\dots[/math] , [math]\mathtt{keys}['z'] = M-1[/math]. Соединим все вершины в дерево по ключу.

list<int> mtf(N):
   list<int> result(N)
   minkey = 0
   for i = 0 to N 
      result.append(findanswer(S[i]))        //Считаем ответ        
      cur = find(keys[S[i]])                 //Находим вершину в дереве 
      split(cur.key)                         //Вырезаем вершину из дерева
      min_key--                              //Уменьшаем минимально-возможный ключ
      cur.key = minkey                       //Ставим ключ в найденной вершине на минимальный
      merge(cur, tree)                       //Объединяем нашу вершину и дерево по ключу
   return result

Функция [math]\mathtt{findanswer}[/math] считает ответ так: если при спуске из вершины дерева мы должны идти вправо, то прибавляем к ответу количество вершин левого поддерева + 1, иначе ничего не добавляем к ответу.

Функции [math]\mathtt{split}[/math] и [math]\mathtt{merge}[/math] — стандартные функции для декартова дерева.

[math]\mathtt{minkey}[/math] — число, которое меньше любого ключа дерева.

Обратное преобразование

Пусть даны строка [math]S = 1222100[/math] и исходный алфавит "ABC". Символ с номером [math]1[/math] в алфавите — это 'B'. На вывод подаётся 'B', и этот символ перемещается в начало алфавита. Символ с номером [math]2[/math] в алфавите — это 'A', поэтому 'A' подается на вывод и перемещается в начало алфавита. Дальнейшее преобразование происходит аналогично.

Символ Список Вывод
1 ABC B
2 BAC C
2 CBA A
2 ACB B
1 BAC A
0 ABC A
0 ABC A

Значит, исходная строка [math]MTF^{-1}(S) = BCABAAA[/math].

Применение

Этот метод позволяет легко преобразовать данные, насыщенные длинными повторами разных символов в блок данных, самыми частыми символами которого будут нули. Без MTF нас подстерегают разного рода трудности в решении проблемы адаптации к данным, поскольку в разных местах данных, полученных на выходе BWT-преобразования, разные символы являются преобладающими. Зачастую мы встречаемся с последовательностями типа "bbbbbcccccdddddaaaaa".

Попробуем сжать эту последовательность при помощи, например, метода Хаффмана. Вероятности всех четырех символов в данном примере равны [math]1/4[/math]. Легко посчитать, что в результате кодирования мы получим последовательность длиной [math]20\cdot2 = 40[/math] бит.

Теперь проделаем то же самое со строкой, подвергнутой MTF-преобразованию (предположим, начальный алфавит выглядит как "abcd").

"bbbbbcccccdddddaaaaa" — исходная строка

"10000200003000030000" — строка после MTF

Символ Частота Вероятность Код Хаффмана
0 16 4/5 0
1 2 1/10 10
2 1 1/20 110
3 1 1/20 111

В результате сжатия получаем последовательность длиной [math]16\cdot1 + 2\cdot2 + 3\cdot2 = 26[/math] бит. Стоит заметить, что выигрыш от применения арифметического кодирования для данного примера будет еще значительней.

См. также

Примечания

Источники информации

  1. Burrows Wheeler Transform FAQ
  2. Move-To-Front (Википедия)
  3. Ryabko, B. Ya. Data compression by means of a «book stack», Problems of Information Transmission, 1980, v. 16: (4), pp. 265–269.
  4. Ryabko, B. Ya.; Horspool, R. Nigel; Cormack, Gordon V. Comments to: «A locally adaptive data compression scheme» by J. L. Bentley, D. D. Sleator, R. E. Tarjan and V. K. Wei. Comm. ACM 30 (1987), no. 9, 792—794.