Изменения

Перейти к: навигация, поиск

Префикс-функция

1563 байта добавлено, 08:03, 7 ноября 2019
Вернул обратно
Здесь и далее считаем, что символы в строках нумеруются с <tex>0</tex>.
Определим префикс-функцию от строки <tex>s</tex> в позиции <tex>i</tex> следующим образом: <tex>\pi(s, i) = \max\limits_{k = 0..1 \ldots i - 1} \{k : </tex> <tex>s[0..\ldots k- 1] = s[i - k..+ 1 \ldots i] \}</tex>. Если мы не нашли такого <tex>k</tex>, то <tex>\pi(s, i)=0</tex>.
==Наивный алгоритм==
Вносятся несколько важных замечаний:
* Заметим, что <tex>p[i + 1] \leqslant p[i] + 1</tex>. Чтобы показать это, рассмотрим суффикс,оканчивающийся на позиции <tex>i + 1</tex> и имеющий длину <tex>p[i + 1]</tex>, удалив из него последний символ, мы получим суффикс, оканчивающийся на позиции <tex>i</tex> и имеющий длину <tex>p[i + 1] - 1</tex>, следовательно неравенство <tex>p[i + 1] > p[i] + 1</tex> неверно.
* Избавимся от явных сравнений строк. Пусть мы вычислили <tex>p[i]</tex>, тогда, если <tex>s[i + 1] = s[p[i] + 1]</tex>, то <tex>p[i + 1] = p[i] + 1</tex>. Если окажется, что <tex>s[i + 1] \ne s[p[i] + 1]</tex>, то нужно попытаться попробовать подстроку меньшей длины. Хотелось бы сразу перейти к такому [[Период_и_бордер,_их_связь#Определения|бордеру]] наибольшей длины, для этого подберем такое <tex>k</tex>, что <tex>k = p[i] - 1</tex>. Делаем это следующим образом. За исходное <tex>k</tex> необходимо взять <tex>p[i - 1]</tex>, что следует из первого пункта. В случае, когда символы <tex>s[k+1]</tex> и <tex>s[i]</tex> не совпадают, <tex>p[k- 1]</tex> {{---}} следующее потенциальное наибольшее значение <tex>k</tex>, что видно из рисунка. Последнее утверждение верно, пока <tex>k>0</tex>, что позволит всегда найти его следующее значение. Если <tex>k=0</tex>, то <tex>p[i]=1</tex> при <tex>s[i] = s[1]</tex> , иначе <tex>p[i]=0</tex>.
[[Файл:mprfx.jpg|800px]]
=== Описание алгоритма ===
Пусть Z-функция хранится в массиве <tex>z[0..\ldots n-1]</tex>. Префикс-функцию будем записывать в массив <tex>p[0..\ldots n-1]</tex>.
Заметим, что если <tex>z[i] > 0, </tex> то для всех элементов с индексом <tex>i + j</tex>, где <tex>0 \leqslant j < z[i] </tex>, значение <tex>p[i + j] </tex> будет не меньше, чем длина подстроки с <tex> i </tex> по <tex> i + j</tex>, что равно <tex>j + 1</tex> (как изображено на рисунке).
Докажем корректность индукцией по длине массива префикс-функции полученной строки. Для начала заметим, что на предыдущие значения массива <tex> q </tex> прибавление нового символа не влияет, так как при подсчёте префикс-функции на <tex> i </tex>-ой позиции рассматриваются символы на позициях не больше <tex> i </tex>. Поэтому достаточно показать, что очередное значение префикс-функции будет вычислено правильно.
* База очевидна для строки длины <tex>1</tex>.
* Переход: пусть до <tex>n</tex>-ой позиции мы построили строку, что <tex>p[0..\ldots n - 1] = q[0..\ldots n - 1]</tex>. Возможны два случая:
** <tex>p[n] = 0</tex>. Тогда мы добавляем новый символ, поэтому <tex>q[n]</tex> тоже будет равно <tex>0</tex>.
** <tex>p[n] > 0</tex>. Бордер строки <tex> s[0..\ldots n - 1] </tex> имеет длину <tex> p[n-1] = q[n-1] </tex>. Поэтому если дописать к строке <tex> s </tex> символ <tex> s[q[n] - 1] </tex>, то бордер нашей новой строки <tex> s[0..\ldots n] </tex> станет равен <tex> p[n] </tex>, как можно увидеть на [[Префикс-функция#Эффективный алгоритм | рисунке]].
== Критерий корректности значений префикс-функции ==
=== Решение ===
Проверим, правда ли Если выполняется неравенство <tex>0 \leqslant p[i + 1] \leqslant p[i] + 1</tex> , то мы можем построить строку из доказательства алгоритма выше, значит префикс-функция корректна. Найдем минимальный алфавит, при котором префикс-функция корректна. Если значение префикс-функции в текущей ячейке больше нуля, буква известна и алфавит не нуждается в добавлении новой буквы. Иначе, необходимо исключить все ранее известные буквы, возвращаясь и проверяя для меньших префиксов. Если все уже известные буквы использованы, понятно что, необходимо добавить новую букву. === Доказательство корректности ===Докажем, что найденнный выше алфавит минимален от противного. Допустим, существует строка, использующая алфавит меньшей мощности. Рассмотрим первое вхождение буквы, которая есть в нашем алфавите, а в их отсутствует. Понятно, что для этого символа префикс-функция равна 0, т.к. мы добавили новую букву. Пройдемся циклом <tex>\mathrm{while}</tex> по подпрефиксам. Т.к. в меньшем решении буква не новая, то она увеличит подпрефикс и префикс-функция в новой строке будет отличаться от нуля в этом символе, а должна равняться нулю. Противоречие, следовательно не существует алфаивта меньшей мощности, чем найденный алгоритмом выше.
=== Псевдокод ===
'''int''' minimal_alphabet('''int'''[] p):
int c = 1
s[0] = 0
'''for''' i = 1 '''to''' p.length - 1
'''if ''' p[i] == 0 '''fill'''(used, false)
k = p[i - 1]
'''while ''' k > 0
used[s[k]] = '''true'''
k = p[k - 1]
s[i] = -1
'''for''' j = 1 '''to''' c
'''if ''' !used[j]
s[i] = j;
'''break ''' '''if ''' s[i] == -1
s[i] = c++
'''else'''
s[i] = s[p[i] - 1]
'''return''' c
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Поиск подстроки в строке]]
[[Категория:Точный поиск]]
Анонимный участник

Навигация