Изменения

Перейти к: навигация, поиск

Примеры сведения к задачам поиска потока

82 байта добавлено, 10:44, 31 мая 2019
Пример №2. Испорченный паркет.
==Пример №2. Испорченный паркет.==
{{Задача
|definition = Дан паркет размером <tex>N \times M</tex>, некоторые клетки которого испорчены, их необходимо закрыть новыми плитками. Плитки бывают размером <tex>2 \times 1</tex> ценой <tex>A</tex>, и <tex>1 \times 1</tex> ценой <tex>B</tex>. Плитки можно поворачивать, но нельзя разрезать. Какую минимальную сумму нужно потратить, что бы чтобы заложить испорченные плитки паркета. Новые плитки не должны перекрывать никакие другие плитки.
}}
===Решение===
{| cellpadding="3" style="margin-left: auto; margin-right: auto;"| [[Файл:Parquet_example_1.png|thumb|400px|Пример паркета]]| [[Файл:Parquet_example_2.png|thumb|400px|Пример раскраски]]|}
Сначала проверим, что <tex>2 \times B>A</tex>. Если это условие не выполнено, то все выгодней замостить только плитками <tex>1 \times 1</tex> и больше нечего считать. Теперь на нужно максимизировать количество плиток ценой <tex>A</tex>.
Раскрасим наш паркет по принципу шахматной доски, тогда один конец плитки <tex>2 \times 1</tex> будет лежать на черной клетке, другой – на белой. Итак, построим двудольный граф, одна доля которого будет содержать белые клетки, другая – черные. Ребра весом в <tex>1</tex> проведем между граничащими клетками. Добавим исток с ребрами в белые вершины весом в бесконечность и сток с ребрами из черных клеток весом тоже в бесконечность. Пускай <tex>f</tex> – величина найденного максимального потока между истоком и стоком, это и будет количество плиток <tex>2 \times 1</tex>. Ответом к задаче будет величина <tex>f \times A+(K-f) \times B</tex>, где <tex>K</tex> – общее число испорченных клеток.
===Доказательство корректности===
Заметим следующее: по сути мы ищем максимальное паросочетание в двудольном графе. Это означает, что белая вершина будет соединена не более чем с одной чёрной и наоборот – это именно то, что нам нужно, ведь соединяя чёрную клетку с белой, мы понимаем, что можем разместить здесь плитку размером <tex>2 \times 1</tex> и она не будет ни с чем пересекаться. Теперь мы ищем максимальное число таких рёбер. Это всё происходит также, как и в сведении задачи поиска максимального паросочетания к задаче о нахождении максимального потока.
=== Оценка времени работы ===
Величину максимального потока можно искать с помощью алгоритма Форда-Фалкерсона, его время работы <tex>O(E|f|)</tex>, где <tex>|f|</tex> – величина найденного максимального потока. Заметим, что <tex>|f| \leqslant \dfrac K 2</tex>, где <tex>K</tex> – общее число испорченных клеток. Также заметим, что <tex>E \leqslant K \times 4</tex>, т.к. <tex>K</tex> рёбер исходят из истока и входят в сток и максимум <tex>4</tex> ребра могут исходить из вершины в левой доле в правую. Из всего этого следует, что итоговое время работы будет <tex>O(K^2)</tex>
 
==Пример №3. Коллекционер монет.==
{{Задача
Анонимный участник

Навигация