Изменения

Перейти к: навигация, поиск

Примитивно рекурсивные функции

34 байта добавлено, 15:56, 6 ноября 2016
Нет описания правки
[[Категория: Математическая логика]]
== Рекурсивные функции ==
Рассмотрим примитивы, из которых будем собирать выражения:
Если некоторая функция <tex>\mathrm{N^n} \rightarrow \mathrm{N}</tex> может быть задана с помощью данных примитивов, то она называется рекурсивной. Если некоторую функцию можно собрать исключительно из первых 5 примитивов (то есть без использования операции минимизации), то такая функция называется примитивно-рекурсивной.
===Примитивно рекурсивные функции===
==== Основные определения ====
Рассмотрим следующие правила преобразования функций:
===== Подстановка =====
Рассмотрим <tex> k </tex>-местную функцию <tex> \mathrm{f}(x_1,\ldots,x_k) </tex> и <tex> k </tex> <tex>n </tex>-местных функций <tex> \mathrm{g_i}(x_1,x_2,\ldots,x_n) </tex>. Тогда после преобразования у нас появится <tex> n </tex>-местная функция <tex>\mathrm{F} </tex>, такая что:
<tex> \mathrm{F} = \mathrm{f}(\mathrm{g_1}(x_1,\ldots,x_n),\ldots, \mathrm{g_k}(x_1,\ldots,x_n)) </tex>.
===== Рекурсия =====
Рассмотрим <tex> k </tex>-местную функцию <tex> \mathrm{f} </tex> и <tex> (k + 2) </tex>-местную функцию <tex> \mathrm{h} </tex>. Тогда после преобразования у нас будет <tex> (k+1) </tex>-местная функция <tex> \mathrm{g} </tex>, которая определена следующим образом:
В дальнейшем вместо <tex> \mathrm{P_{n,k}}(x_1,\ldots,x_k) </tex> будем писать просто <tex> x_k </tex>, подразумевая требуемое нам <tex> n </tex>.
==== Арифметические операции на примитивно рекурсивных функциях ====
===== ''' n '''-местный ноль =====
<tex> \textbf 0 </tex> - функция нуля аргументов.
<tex> \textbf M^n </tex> - n местная константа, получается аналогичным к <tex> \textbf 0^n </tex> образом.
===== Сложения =====
<tex> \mathrm{sum}(x,0) = x </tex>
<tex> \mathrm{sum}(x,y+1) = \mathrm{h}(x,y,\mathrm{sum}(x,y)) </tex> , где <tex> \mathrm{h}(x,y,z)=\mathrm{I}(z) </tex>
===== Умножения =====
<tex> \mathrm{prod}(x,0) = \textbf 0^1(x) </tex>
<tex> \mathrm{prod}(x,y+1) = \mathrm{h}(x,y,\mathrm{prod}(x,y)) </tex>, где <tex> \mathrm{h}(x,y,z)=\mathrm{sum}(x,z) </tex>
===== Вычитания =====
Если <tex> x < y </tex>, то <tex> \mathrm{sub}(x,y) = 0 </tex> , иначе <tex> \mathrm{sub}(x,y) = x - y </tex>.
<tex> \mathrm{sub}(x,y+1) = \mathrm{h}(x,y,\mathrm{sub}(x,y)) </tex>, где <tex> \mathrm{h}(x,y,z) =\mathrm{sub_1}(z) </tex>
===== Операции сравнения =====
<tex> \mathrm{eq}(x,y) = 1 </tex> если <tex> x = y </tex>, иначе <tex> \mathrm{eq}(x,y) = 0 </tex>
<tex> \mathrm{lower}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(\mathrm{I}(x),y)) </tex>
===== IF =====
<tex> \mathrm{if}(0,x,y) = y </tex>
<tex> \mathrm{if}(c+1,x,y) = \mathrm{h}(c,x,y,\mathrm{if}(c,x,y)) </tex> , где <tex> \mathrm{h}(c,x,y,d) = x </tex>
===== Деление =====
<tex> \mathrm{divide}(x,y) = \lfloor {\frac{x}{y}} \rfloor </tex>, если <tex> y > 0 </tex>. Если же <tex> y = 0 </tex>, то <tex> \mathrm{divide}(x,0) </tex> и все связанные с делением функции равны каким то ,не интересными для нас, числами.
<tex> \mathrm{mod}(x,y) = \mathrm{sub}(x,\mathrm{mul}(y,\mathrm{divide}(x,y))) </tex>
===== Работа со списками фиксированной длины =====
С помощью описанных выше арифметических операций можно выразить проверку на простоту числа и поиск <tex> n </tex> - того простого числа.
Рассмотрим список из натуральны чисел <tex> [x_1,\ldots,x_n] </tex>, тогда ему в соответствия можно поставить число <tex> p_1^{x_1+1} \cdot p_2^{x_2+1} \cdot \ldots \cdot p_n^{x_n+1} </tex>, где <tex> p_i - i</tex>-тое простое число. Как видно из представления,создания списка, взятие <tex> i </tex> - того
элемента и остальные операции являются простыми арифметическими операциями, а следовательно примитивно рекурсивными. Поэтому будем считать что у примитивно рекурсивной функций аргументы и результат могут быть списками из натуральных чисел.
==== Теорема о примитивной рекурсивности вычислимых функций ====
{{Теорема
|statement= Если для [[Вычислимые функции|вычислимой функции]] <tex> \mathrm{F} </tex> существует примитивно рекурсивная функция <tex> \mathrm{T} </tex>, такая что для любых аргументов <tex> args </tex> максимальное количество шагов, за которое будет посчитана <tex> \mathrm{F}(x) </tex> на [[Машина Тьюринга|МТ]] равно <tex> \mathrm{T}(args) </tex>, то <tex> \mathrm{F} </tex> примитивно рекурсивная функция.
}}
== Арифметические функции и отношения. Их выразимость в формальной арифметике ==
Введем обозначение. Будем говорить, что <tex>\alpha (x_1, \dots x_n)</tex> &mdash; это формула с <tex>n</tex> свободными переменными, если переменные <tex>x_1, ... x_n</tex> входят в <tex>\alpha</tex> свободно. Запись <tex>\alpha (y_1, \dots y_n)</tex> будем трактовать, как <tex>\alpha [x_1 := y_1, ... x_n := y_n]</tex>, при этом мы подразумеваем, что <tex>y_1, \dots y_n</tex> свободны для подстановки вместо <tex>x_1, \dots x_n</tex> в <tex>\alpha</tex>.
}}
==Источники информации ==
* Н. К. Верещагин, А. Шень. [http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., испр., М.: МЦНМО, 2012]
*[http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%81%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D0%B8) Рекурсивные функции на википедии]
313
правок

Навигация