Изменения

Перейти к: навигация, поиск

Проблема четырёх красок

2465 байт добавлено, 04:31, 10 ноября 2018
Нет описания правки
== Краткая история ==
Раскрашивая географическую карту естественно пользоваться по возможности меньшим количеством цветов, однако так, чтобы две страны, имеющие общую часть границы (не только общую точку), были окрашены по-разному. В 1852 году Френсис Гутри, составляя карту графств Англии, обратил внимание, что для такой цели вполне хватает четырех красок. Его брат, Фредерик, сообщил об этом наблюдении известному математику О. Де Моргану, а тот – математической общественности. Точная формулировка гипотезы опубликована А. Кэли в 1878 году. Первое доказательство появилось год спустя и принадлежало В. Кемпе. Одиннадцать лет спустя П. Хивуд обнаружил в нем ошибку. (Однако из доказательства Хивуд понял, что пяти красок действительно [[Хроматическое_число_планарного_графа#Раскраска_в_5_цветов|достаточно]]). За первым ошибочным доказательством последовало множество других. До середины XX века, хотя проблемой четырех красок занимались многие выдающиеся математики, положение с доказательством изменилось несущественно: идеи Дж. Д. Биркгофа позволили П. Франклину в 1913 году доказать гипотезу для карты с не более чем 25 странами. Позже это число было увеличено до 38. В 1977 году доказательство гипотезы четырех красок было наконец получено К. Аппелем и У. Хакеном и опубликовано в двух статьях<ref>Appel K., Haken W. Every Planar Map Is Four Colorable. Contemporary Mathematics. Providence (R.I.): Amer. Math Soc., 1989. Vol. 98. 308 р.</ref>. Значительную часть рутинных проверок выполнил компьютер, и это революционное нововведение в сложившуюся практику дедуктивных рассуждений в чистой математике служит основанием для некоторого естественного скептицизма по отношению к данному доказательству и по сей день.
== Формулировка проблемы ==
[[Файл:Раскраска_планарного_графа_в_4_цвета.png|230px|thumb|right|4-раскраска планарного графа]]
Доказательство Аппеля и Хакена, в целом хотя и принято математическим сообществом, но как было сказано выше вызывает , до сих пор определенный скептицизм. Дело в том, что даже сами авторы доказательства пишут следующее:
''"Читатель должен разобраться в 50 страницах текста и диаграмм, 85 страницах с почти 2500 дополнительными диаграммами, 400 страницами микрофишей, содержащими еще диаграммы, а также тысячи отдельных проверок утверждений, сделанных в 24 леммах основного текста. Вдобавок читатель узнает, что проверка некоторых фактов потребовала 1200 часов компьютерного времени, а при проверке вручную потребовалось бы гораздо больше. Статьи устрашающи по стилю и длине, и немногие математики прочли их сколько-нибудь подробно"''
Говоря прямо, компьютерную часть доказательства почти невозможно проверить вручную, а традиционная часть доказательства длинна и сложна настолько, что ее никто целиком и не проверял. Не так давно Некоторое время назад появилось новое доказательство <ref>Thomas R. An Update on the Four-Color Theorem // Not. Amer. Math. Soc. 1998. Vol. 45, № 7. Р. 848–859.</ref>, причем та часть, которая выполнена не на компьютере, уже поддается проверке. Однако компьютерная часть все еще остается скорее предметом веры. == Общие идеи доказательства ==Очевидно, что мы не сможем рассмотреть доказательство целиком, но посмотрим на общие идеи, которые в нем используются.  Во-первых, если [[Укладка графа на плоскости|грани]] образованные нашим планарным графом не триангуляция, то есть имеют не ровно три ребра у их границ, мы можем добавлять ребра без внедрения новых вершин до тех пор, пока все грани не станут триангулированными. Если эта триангуляция графа является раскрашиваемой в 4 и менее цветов, то и исходный граф раскрашиваем так же (так как удаление ребер не увеличивает хроматическое число). Поэтому достаточно доказать теорему четырех цветов для триангулированных графов, чтобы доказать это для всех плоских графов, и без потери общности мы предполагаем, что граф триангулирован. Для дальнейших рассуждений нам понадобится следующее утверждение: {{Утверждение|statement=Для триангулированного графа <tex>\sum\limits^{D}_{i=1}(6-i)v_{i} = 12</tex>, где <tex>v_{i}</tex> {{---}} количество вершин степени <tex>i</tex>, а <tex>D</tex> {{---}} максимальная степень вершины в графе.|proof=Так как граф триангулирован, то <tex>2E=3F</tex>, где <tex>E</tex> {{---}} количество ребер, а <tex>F</tex> {{---}} количество граней. Из [[Формула_Эйлера|формулы Эйлера]] <tex>V - E + \dfrac{2}{3}E = 2 ~\rightarrow~ 6V - 2E = 6\sum\limits_{i=1}^{D}v_{i} - \sum\limits_{i=1}^{D}iv_{i} = \sum\limits_{i=1}^{D}(6 - i)v_{i} = 12</tex>}}
== Примeчания ==
286
правок

Навигация