Изменения

Перейти к: навигация, поиск

Производящая функция Дирихле

3277 байт добавлено, 20:21, 17 апреля 2018
Умножение
* Вместо переменной <tex>x</tex> используется <tex>s</tex>. Это изменение связано больше с традициями, чем с математикой.
* Принято писать <tex> \dfrac{a_n}{n^s} </tex> вместо <tex> {a_n}{n^{-s}} </tex>. Это считается более удобной формой.
== Операции над производящими функциями Дирихле==
 
=== Сложение ===
 
Сложение производящих функций соответствует обычному почленному сложению последовательностей.
 
=== Умножение ===
 
Если <tex>A(s)</tex> и <tex>B(s)</tex> — производящие функции Дирихле двух последовательностей <tex>\{a_n\}_{n=1}^\infty</tex> и <tex>\{b_n\}_{n=1}^\infty</tex> соответственно, то <tex>A(s)B(s) = \dfrac{a_1b_1}{1^s} + \dfrac{a_1b_2 + a_2b_1}{2^s} + \dfrac{a_1b_3 + a_3b_1}{3^s} + \dfrac{a_1b_4 + a_2b_2 + a_4b_1}{4^s} + \dots = \sum\limits_{n} n^{-s}\sum\limits_{kl=n} {a_kb_l}</tex>, где внутреннее суммирование ведётся по всем разложениям числа <tex>n</tex> в произведение двух сомножителей.
 
=== Единица ===
 
Роль единицы при умножении производящих функций Дирихле играет функция <tex>1 = 1 ^ {-s}</tex>.
 
=== Обратимость ===
 
Любая производящая функция Дирихле <tex>A(s)</tex> с ненулевым свободным членом (<tex>a_1 \neq 0</tex>) обратима, то есть для неё существует функция <tex>B(s)</tex>, такая что <tex>A(s)B(s) = 1</tex>.
 
Действительно, по правилу перемножения функций имеем <tex>A(s)B(s) = \dfrac{a_1b_1}{1^s} + \dfrac{a_1b_2 + a_2b_1}{2^s} + \dfrac{a_1b_3 + a_3b_1}{3^s} + \dfrac{a_1b_4 + a_2b_2 + a_4b_1}{4^s} + \dots = \sum\limits_{n} n^{-s}\sum\limits_{kl=n} {a_kb_l}</tex>, что в нашем случае равно <tex>1 = 1 ^ {-s}</tex>. Получаем, что <tex>a_1b_1 = 1</tex>, тогда <tex>b_1 = \dfrac{1}{a_1}</tex>. Остальные слагаемые равны <tex>0</tex>. Рассмотрим их. Известно, что коэффициент перед <tex>\dfrac{1}{n^s}</tex> равен <tex>\sum\limits_{kl=n} {a_kb_l} = {a_1b_n} + \sum\limits_{kl=n,k\neq 1} {a_kb_l}</tex>. Отсюда <tex>{b_n} = -\dfrac{\sum\limits_{kl=n,k\neq 1} {a_kb_l}}{a_1}</tex> для всех <tex>n>1</tex>.
 
<!----
 
Attention!
Можно привести доказательство теоремы об обратной функции для дзета-функции Римана <!---лол, это была не я. (МК)//узковат кругозор у Вас, мужик, неприятненько было убирать за Вами :с --->
== Применение ==
Производящие функции Дирихле используются в мультипликативной теории чисел. Введение производящей функции Дирихле обусловлено их поведением относительно умножения, что позволяет контролировать мультипликативную структуру натуральных чисел<ref>[https://ru.wikipedia.org/wiki/%D0%9C%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D0%BF%D0%BB%D0%B8%D0%BA%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F Мультипликативные функции]</ref>.
<!------------jalko stirat' no net mesta---------{{Определение
|definition =
'''Мультипликативная функция''' (''multiplicative function'') {{---}} функция <math>f(m)</math>, такая что
:: <math>f(1)=1</math>.
}}---------->
{{Определение
|definition =
'''Мультипликативная последовательность''' (''multiplicative sequence'') {{---}} последовательность <tex> \{a_n\}_{n=1}^{\infty} </tex>, такая что <tex>a_{mn} = a_m a_n</tex> для любых чисел <math>m</math> и <math>n</math>.
}}
Заметим, что для мультипликативных последовательностей <tex>a_1=1</tex>. Иначе равенство <tex>a_{mn} = a_m a_n</tex> при <tex>m=1</tex> не выполнено, если <tex>a_1\neq 0</tex> либо превращается в нулевую последовательность, если <tex>a_1=0</tex>.
 
{{Утверждение
|statement= Последовательность <tex> \{a_n\}_{n=1}^{\infty} </tex> является мультипликативной тогда и только тогда, когда соответствующая ей производящая функция Дирихле имеет вид
<tex>A(s)= \prod\limits_p\bigg(1 + \sum\limits_{n=1}^\infty \dfrac{a_p}{p^ns}\bigg)</tex>, где <tex>p</tex> принимает все простые значения.
}}
|}
== Операции == === Умножение === Если <tex>A(s)</tex> и <tex>B(s)</tex> — производящие функции Дирихле двух последовательностей <tex>\{a_n\}_{n=1}^\infty</tex> и <tex>\{b_n\}_{n=1}^\infty</tex> соответственно, то <tex>A(s)B(s) = \dfrac{a_1b_1}{1^s} + \dfrac{a_1b_2 + a_2b_1}{2^s} + \dfrac{a_1b_3 + a_3b_1}{3^s} + \dfrac{a_1b_4 + a_2b_2 + a_4b_1}{4^s} + \dots = \sum\limits_{n} \dfrac{\sum\limits_{kl=n} {a_kb_l}}{n^s}</tex>, где внутренние суммирование ведется по всем разложением числа <tex>n</tex> в произведение двух сомножителей. Таким образом, использование производящих функций Дирихле позволяет контролировать мультипликативную структуру натуральных чисел.=== Сложение === Сложение производящих функций соответствует обычному почленному сложению последовательностей.  === Единица === Роль единицы при умножении производящих функций Дирихле играет функция <tex>1 = 1 ^ {-s}</tex>. === Обратимость === Любая производящая функция Дирихле <tex>A(s)</tex> с ненулевым свободным членом, <tex>a_1 \neq 0</tex>, обратима: для нее существует функция <tex>B(s)</tex>, такая что <tex>A(s)B(s) = 1</tex>.  Действительно, по правилу перемножения функций имеем <tex>A(s)B(s) = \dfrac{a_1b_1}{1^s} + \dfrac{a_1b_2 + a_2b_1}{2^s} + \dfrac{a_1b_3 + a_3b_1}{3^s} + \dfrac{a_1b_4 + a_2b_2 + a_4b_1}{4^s} + \dots = \sum\limits_{n} \dfrac{\sum\limits_{kl=n} {a_kb_l}}{n^s}</tex>, что в нашем случае равно <tex>1 = 1 ^ {-s}</tex>. Получаем, что <tex>a_1b_1 = 1</tex>, тогда <tex>b_1 = \dfrac{1}{a_1}</tex>. Остальные слагаемые равны <tex>0</tex>. Рассмотрим их. Известно, что коэффициент перед <tex>\dfrac{1}{n^s}</tex> равен <tex>\sum\limits_{kl=n} {a_kb_l} = {a_1b_n} + \sum\limits_{kl=n,k\neq 1} {a_kb_l}</tex>. Отсюда <tex>{b_n} = -\dfrac{\sum\limits_{kl=n,k\neq 1} {a_kb_l}}{a_1}</tex>. <!---- Attention!Можно привести доказательство теоремы об обратной функции для дзета-функции Римана <!---лол, это была не я. (МК)//узковат кругозор у Вас, мужик, неприятненько было убирать за Вами :с ---> ==Свойства некоторых производящих функций Дирихле== <!-------xz как назвать, потом придумаю)))------->
{{Теорема
<tex>\mu_n = \begin{cases}
(-1)^{t_n} & \text{где } t_n \text{ равно количеству простых делителей числа } n \text{, если в разложении этого числа они не повторяются} \\0& \text{иначе}
\end{cases}</tex> <!------ !!! how to make po-russki ??? ----->
|proof =
Перемножим функции <tex>M(s)</tex> и <tex>\zeta(s)</tex> и рассмотрим коэффициент при <tex>n^{-s}</tex>. Назовём его <tex>f_n</tex>. Тогда
<tex>f_n = \sum\limits_{k=0}^{t_n}(-1)^{k}\cdot\dbinom{t_n}{k}</tex>.Действительно, пусть [[Разложение на множители (факторизация)|разложение <tex>n </tex> на простые множители ]] имеет вид <tex>n = p^{k_1}_1\cdot\ldots\cdot p^{k_{t_n}}_{t_n}</tex>. Тогда коэффициент при <tex>m^{−s}</tex> функции <tex>M(s)</tex> участвует в произведении с ненулевым коэффициентом в том и только в том случае, если <tex>m</tex>является произведением некоторого подмножества множества простых чисел <tex>n = p_1\ldots p_{t_n}</tex>. Число таких подмножеств из <tex>k</tex> элементов равно <tex>\dbinom{t_n}{k}</tex>, а знак соответствующего коэффициента при <tex>m^{−s}</tex> равен <tex>(-1)^{k}</tex>. }}{{Теорема|statement = Пусть <tex>f_n,g_n</tex> такие, что <tex>f_n = \sum\limits_{n\vdots k} g_k</tex>. Тогда <tex>g_n = \sum\limits_{n\vdots k} \mu_k f_k</tex>.|proof = Равенство <tex>f_n = \sum\limits_{n\vdots k} g_k</tex> означает, что <tex>F(s) = \zeta(s)G(s)</tex>, где <tex>F(s),G(s)</tex> {{---}} производящие функции Дирихле для последовательностей <tex>\{f_n\}_{n=1}^{\infty}</tex> и <tex>\{g_n\}_{n=1}^{\infty}</tex> соответственно. Домножим левую и правую части на <tex>M(s)</tex>. Получаем <tex>M(s)F(s) = M(s)\zeta(s)G(s)</tex>, а правая часть равна <tex>G(s)</tex>, так как <tex>M(s)</tex> и <tex>\zeta(s)</tex> сокращаются по предыдущей теореме.
}}
{{Утверждение
|statement=<tex>\zeta(s) = \prod\limits_{p} \dfrac{1}{1 - p^{-s}}</tex>, где <tex>p</tex> принимает все простые значения.
|proof = Данное равенство верно, если <tex>M(s) = \prod\limits_{p} {(1 - p^{-s})}</tex>. Но последнее равенство доказывается раскрытием скобок. В результирующей последовательности будут участвовать лишь те слагаемые, для которых <tex>n</tex> представляется в виде произведения попарно различных простых множителей, а их количество определяет знак. Эта последовательность по определению является последовательностью Мёбиуса.
}}
693
правки

Навигация