Редактирование: Производящие функции нескольких переменных
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 15: | Строка 15: | ||
}} | }} | ||
− | [[File:Pascal_triangle.png|thumb| | + | [[File:Pascal_triangle.png|thumb|400px|right|Рис.<tex>1</tex>]] |
Элементы треугольника (рис.<tex>1</tex>) перечисляют пути, идущие из его вершины в соответствующую клетку. Пути имеют вид ломаных, составленных из векторов единичной длины двух видов: идущих вправо-вниз и идущих влево-вниз. | Элементы треугольника (рис.<tex>1</tex>) перечисляют пути, идущие из его вершины в соответствующую клетку. Пути имеют вид ломаных, составленных из векторов единичной длины двух видов: идущих вправо-вниз и идущих влево-вниз. | ||
Строка 21: | Строка 21: | ||
Производящая функция может быть сопоставлена треугольнику Паскаля несколькими способами. Например, можно рассмотреть производящую функцию | Производящая функция может быть сопоставлена треугольнику Паскаля несколькими способами. Например, можно рассмотреть производящую функцию | ||
− | <tex> | + | <tex>\sum\limits_{n,k = 0}^{\infty} c_{n,k} x^k y^n = \sum\limits_{n,k = 0}^{\infty} \binom{n}{k} x^k y^n = \sum\limits_{n = 0}^{\infty}\Big(\sum\limits_{k = 0}^{n} \binom{n}{k} x^k\Big) y^n = \sum\limits_{n = 0}^{\infty} (1 + x)^n y^n = \dfrac{1}{1 - y - xy}</tex> |
− | [[File:Pascal_triangle_3.png|thumb| | + | [[File:Pascal_triangle_3.png|thumb|385px|right|Рис.<tex>2</tex>]] |
Второй способ соответствует нумерации элементов треугольника числом отрезков каждого типа на путях, ведущих в соответствующую точку (рис.<tex>2</tex>) <tex>C_{n,m} = c_{n+m, n} = \dbinom{n+m}{m}</tex>. Тогда производящая функция будет иметь вид | Второй способ соответствует нумерации элементов треугольника числом отрезков каждого типа на путях, ведущих в соответствующую точку (рис.<tex>2</tex>) <tex>C_{n,m} = c_{n+m, n} = \dbinom{n+m}{m}</tex>. Тогда производящая функция будет иметь вид | ||
− | <tex> | + | <tex>\sum\limits_{n,m = 0}^{\infty} C_{n, m} x^n y^m = \sum\limits_{n,m = 0}^{\infty} \binom{n+m}{m} x^n y^m = \sum\limits_{k = 0}^{\infty} \sum\limits_{n + m = k} \binom{n+m}{n} |
− | x^n y^m | + | x^n y^m = \sum\limits_{k = 0}^{\infty} (x + y)^k = \dfrac{1}{1 -x - y}</tex> |
Также существует еще один способ: сопоставить треугольнику Паскаля ''экспоненциальную производящую функцию''. Экспоненциальная производящая функция отличается от обычной тем, что в качестве коэффициентов степенного ряда берутся не элементы последовательности <tex>a_n</tex>, а числа <tex>\dfrac{a_n}{n!}</tex>. | Также существует еще один способ: сопоставить треугольнику Паскаля ''экспоненциальную производящую функцию''. Экспоненциальная производящая функция отличается от обычной тем, что в качестве коэффициентов степенного ряда берутся не элементы последовательности <tex>a_n</tex>, а числа <tex>\dfrac{a_n}{n!}</tex>. |