Редактирование: Производящие функции нескольких переменных

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 118: Строка 118:
 
Экспоненциальная производящая функция для многочленов Бернулли имеет вид:
 
Экспоненциальная производящая функция для многочленов Бернулли имеет вид:
  
<tex>\mathcal{B}(x, s) = \displaystyle\sum\limits_{n=0}^{\infty}B_n(x)\dfrac{s^n}{n!} = \dfrac{s}{e^s - 1}e^{sx}</tex>.
+
<tex>\mathcal{B}(x, s) = \sum\limits_{n=0}^{\infty}B_n(x)\dfrac{s^n}{n!} = \dfrac{s}{e^s - 1}e^{sx}</tex>.
 
| proof =  
 
| proof =  
 
Для доказательства теоремы достаточно применить операцию усреднения к левой и правой частям равенства. С одной стороны, мы имеем:
 
Для доказательства теоремы достаточно применить операцию усреднения к левой и правой частям равенства. С одной стороны, мы имеем:
  
<tex>A(B(x, s)) = \displaystyle\sum\limits_{n=0}^{\infty}A(B_n(x))\dfrac{s^n}{n!} = \sum\limits_{n=0}^{\infty}x^n\dfrac{s^n}{n!} = e^{xs}</tex>.
+
<tex>A(B(x, s)) = \sum\limits_{n=0}^{\infty}A(B_n(x))\dfrac{s^n}{n!} = \sum\limits_{n=0}^{\infty}x^n\dfrac{s^n}{n!} = e^{xs}</tex>.
  
 
С другой стороны, имеем:
 
С другой стороны, имеем:
Строка 137: Строка 137:
 
Доказанная теорема позволяет нам легко выписать экспоненциальную производящую функцию для чисел Бернулли. Для этого достаточно подставить в экспоненциальную производящую функцию для многочленов Бернулли значение <tex>x = 0</tex>:
 
Доказанная теорема позволяет нам легко выписать экспоненциальную производящую функцию для чисел Бернулли. Для этого достаточно подставить в экспоненциальную производящую функцию для многочленов Бернулли значение <tex>x = 0</tex>:
  
<tex>\displaystyle\sum\limits_{n=0} B_n\dfrac{s^n}{n!} = \dfrac{s}{e^s - 1}</tex>.
+
<tex>\sum\limits_{n=0} B_n\dfrac{s^n}{n!} = \dfrac{s}{e^s - 1}</tex>.
  
 
==См. также==
 
==См. также==

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: