Изменения

Перейти к: навигация, поиск

Производящие функции нескольких переменных

24 байта добавлено, 19:22, 20 июня 2020
Многочлены Бернулли
{{Определение
|definition=
'''Производящие функции нескольких переменных''' (англ. ''multivariable generating function'') {{---}} обычные [[Производящая функция | производящие функции ]], зависящие более, чем от одной переменной. Очень часто применяются функции от двух переменных (далее они и будут рассматриваться), которые в общем случае принимают вид:
<tex>G(x, y) = \sum\limits_{n, k \geqslant 0} g_{n, k} x^n y^k</tex>.
}}
[[File:Pascal_triangle.png|thumb|400px350px|right|Рис.<tex>1</tex>]]
Элементы треугольника (рис.<tex>1</tex>) перечисляют пути, идущие из его вершины в соответствующую клетку. Пути имеют вид ломаных, составленных из векторов единичной длины двух видов: идущих вправо-вниз и идущих влево-вниз.
Производящая функция может быть сопоставлена треугольнику Паскаля несколькими способами. Например, можно рассмотреть производящую функцию
<tex>\displaystyle\sum\limits_{n,k = 0}^{\infty} c_{n,k} x^k y^n = \sum\limits_{n,k = 0}^{\infty} \beginbinom{pmatrixn} n \\ {k \end{pmatrix} x^k y^n = \sum\limits_{n = 0}^{\infty}</tex><tex>\Big(\sum\limits_{k = 0}^{n} \beginbinom{pmatrixn} n \\ {k \end{pmatrix} x^k\Big) y^n = \displaystyle\sum\limits_{n = 0}^{\infty} (1 + x)^n y^n = \dfrac{1}{1 - y - xy}</tex>
[[File:Pascal_triangle_3.png|thumb|600px320px|right|Рис.<tex>2</tex>]]
Второй способ соответсвует соответствует нумерации элементов треугольника числом отрезков каждого типа на путях, ведущих в соответствующую точку (рис.<tex>2</tex>) <tex>C_{n,m} = c_{n+m, n} = \begindbinom{pmatrix} n + m \\ }{m \end{pmatrix}</tex>. Тогда производящая функция будет иметь вид
<tex>\displaystyle\sum\limits_{n,m = 0}^{\infty} C_{n, m} x^n y^m = \sum\limits_{n,m = 0}^{\infty} \beginbinom{pmatrix} n + m \\ }{m \end{pmatrix} x^n y^m = \sum\limits_{k = 0}^{\infty} </tex><tex> \Big(\sum\limits_{n + m = k} \beginbinom{pmatrix} n + m \\ }{n \end{pmatrix}x^n y^m \Big)= \displaystyle\sum\limits_{k = 0}^{\infty} (x + y)^k = \dfrac{1}{1 -x - y}</tex>
Также существует еще один способ: сопоставить треугольнику Паскаля ''экспоненциальную производящую функцию''. Экспоненциальная производящая функция отличается от обычной тем, что в качестве коэффициентов степенного ряда берутся не элементы последовательности <tex>a_n</tex>, а числа <tex>\dfrac{a_n}{n!}</tex>.
<tex>\{ \alpha_n \} \mapsto \sum\limits_{n = 0}^{\infty} a_n \alpha_n s^n</tex>
определяемую последовательностью <tex>\{ \alpha_n \}</tex>. Если в последовательности <tex>\{ \alpha_n \}</tex> отсутствуют нулевые элементы, то такое сопоставление взаимно однозначно. До сих пор мы пользовались обычными производящими функциями - , отвечающими последовательности <tex>\{ \alpha_n \} \equiv 1</tex>. В зависимости от преследуемых целей целей могут принести и другие последовательности .
{{Определение
|definition=
'''Производящие экспоненциальные функции''' (англ. ''exponential generating function'') {{---}} функции, соответсвующие соответствующие последовательности <tex>\{ \alpha_n \} = \dfrac{1}{n!}</tex>.
}}
Чем отличаются экспоненциальные производящие функции от обычных? Посмотрим на поведение экспоненциальных производящих функций при выполнении операции над ними. Сумма ведет себя обычным образом:
<tex>\displaystyle\sum\limits_{n = 0}^{\infty} \dfrac{a_n}{n!}s^n + \sum\limits_{n = 0}^{\infty} \dfrac{b+nb_n}{n!}s^n = \sum\limits_{n = 0}^{\infty} \dfrac{(a_n + b_n)}{n!} s^n</tex>
а с произведением по-другому :
<tex>\bigg(\dfrac{a_0}{0!} + \dfrac{a_1}{1!}s + \dfrac{a_2}{2!}s^2 + \ldots\bigg)\bigg(\dfrac{b_0}{0!} + \dfrac{b_1}{1!}s + \dfrac{b_2}{2!}s^2 + \ldots\bigg) = \dfrac{a_0}{0!} \dfrac{b_0}{0!} + \bigg(\dfrac{a_0}{0!} \dfrac{b_1}{1!} + \dfrac{a_1}{1!} \dfrac{b_0}{0!}\bigg)s + \bigg(\dfrac{a_0}{0!} \dfrac{b_2}{2!} + \dfrac{a_1}{1!} \dfrac{b_1}{1!} + \dfrac{a_2}{2!} \dfrac{b_0}{0!}\bigg)s^2 + \ldots</tex>
Коэффициенты <tex>\dfrac{c_n}{n!}</tex> произведения вычисляются по формуле
<tex>c_n = \begin{pmatrix} n \\ 0 \end{pmatrix} a_0 b_n + \begin{pmatrix} n \\ 1 \end{pmatrix} a_1 b_{n - 1} + \ldots + \begin{pmatrix} n \\ n \end{pmatrix} a_0 a_n b_0</tex>
Еще одно существенное отличие экспоненциальных производящих функций от обычных наблюдается при взятии производных (и при интегрировании). Дифференцирование или интегрирование экспоненциальной производящей функции приводит к сдвигу последовательности ее коэффициентов без изменения их велечинывеличины:
<tex>\bigg( \dfrac{a_0}{0!} + \dfrac{a_1}{1!}s + \dfrac{a_2}{2!}s^2 + \ldots \bigg)^{'} = \dfrac{a_1}{0!} + \dfrac{a_2}{1!}s + \dfrac{a_3}{2!}s^2 + \ldots </tex>
<tex>\displaystyle\int \bigg(\dfrac{a_0}{0!} + \dfrac{a_1}{1!}s + \dfrac{a_2}{2!}s^2 + \ldots \bigg) = \dfrac{a_0}{1!}s + \dfrac{a_1}{2!}s^2 + \dfrac{a_2}{3!}s^3 + \dfrac{a_3}{4!}s^4 + \ldots </tex>
Обычная производящая функция <tex>A(s) = a_0 + a_1s + a_2s^2 + \ldots</tex> выражается через экспоненциальную <tex>B(t) = \dfrac{a_0}{0!} + \dfrac{a_1}{1!}t + \dfrac{a_2}{2!}t^2 + \ldots </tex> по формуле
<tex>A(s) = \int_int\limits_{0}^{\infty} e^{-t} B(st) dt</tex>
Действительно,
<tex>k! = \int_int\limits_{0}^{\infty} e^{-t}t^kdt</tex>
Теперь можно выписать экспоненциальную производящую функцию для треугольника Паскаля:
<tex>\displaystyle\sum\limits_{n, m = 0}^{\infty} \dfrac{1}{(n + m)!} \begindbinom{pmatrix} n + m \\ }{m \end{pmatrix} x^n y^m = \sum\limits_{n = 0}^{\infty} \dfrac{(x + y)^n}{n!} = e^{x + y}</tex>
==Многочлены Бернулли==
Для начала введен введём операцию ''усреднения'', положив
<tex>A(f(x)) = \int_int\limits_{x}^{x+1}f(t)dt</tex>.
Нетрудно заметить, что эта операция переводит многочлены в многочлены: она линейна, т.е. <tex>A(a_1f_1 + a_2f_2) = a_1A(f_1) + a_2A(f_2)</tex> для любых постоянных <tex>a_1, a_2</tex> и любых многочленов <tex>f_1,
Экспоненциальная производящая функция для многочленов Бернулли имеет вид:
<tex>\mathcal{B}(x, s) = \displaystyle\sum\limits_{n=0}^{\infty}B_n(x)\dfrac{s^n}{n!} = \dfrac{s}{e^s - 1}e^{sx}</tex>.
| proof =
Для доказательства теоремы достаточно применить операцию усреднения к левой и правой частям равенства. С одной стороны, мы имеем:
<tex>A(B(x, s)) = \displaystyle\sum\limits_{n=0}^{\infty}A(B_n(x))\dfrac{s^n}{n!} = \sum\limits_{n=0}^{\infty}x^n\dfrac{s^n}{n!} = e^{xs}</tex>.
С другой стороны, имеем:
Доказанная теорема позволяет нам легко выписать экспоненциальную производящую функцию для чисел Бернулли. Для этого достаточно подставить в экспоненциальную производящую функцию для многочленов Бернулли значение <tex>x = 0</tex>:
<tex>\displaystyle\sum\limits_{n=0} B_n\dfrac{s^n}{n!} = \dfrac{s}{e^s - 1}</tex>.
==См. также==
693
правки

Навигация