Редактирование: Произвольно вычерчиваемые из заданной вершины графы
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 11: | Строка 11: | ||
|proof= | |proof= | ||
[[Файл:ATG_part1.jpg|200px|right]] | [[Файл:ATG_part1.jpg|200px|right]] | ||
− | <tex>\Rightarrow</tex | + | <tex>\Rightarrow</tex> |
Пусть в <tex>G</tex> <tex>\exists</tex> цикл <tex>C, v \notin C</tex>.<br> | Пусть в <tex>G</tex> <tex>\exists</tex> цикл <tex>C, v \notin C</tex>.<br> | ||
Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). При удалении цикла все степени вершин остались четными, потому что каждая вершина содержит четное количество ребер цикла, и следовательно <tex>G_1</tex> {{---}} эйлеров. Тогда в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти, так как из вершины <tex>v</tex> больше нет не посещенных ребер <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>. | Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). При удалении цикла все степени вершин остались четными, потому что каждая вершина содержит четное количество ребер цикла, и следовательно <tex>G_1</tex> {{---}} эйлеров. Тогда в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти, так как из вершины <tex>v</tex> больше нет не посещенных ребер <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>. | ||
[[Файл:ATG_part2.jpg|200px|right]] | [[Файл:ATG_part2.jpg|200px|right]] | ||
− | <tex>\Leftarrow</tex | + | <tex>\Leftarrow</tex> |
Пусть дан эйлеров граф <tex>G</tex>, вершина <tex>v</tex> принадлежит всем его циклам.<br> | Пусть дан эйлеров граф <tex>G</tex>, вершина <tex>v</tex> принадлежит всем его циклам.<br> | ||
Рассмотрим произвольный путь <tex>P = v \leadsto w</tex>. Пусть <tex>G_1 = G/P</tex>. Возможны 2 случая: | Рассмотрим произвольный путь <tex>P = v \leadsto w</tex>. Пусть <tex>G_1 = G/P</tex>. Возможны 2 случая: | ||
Строка 38: | Строка 38: | ||
==См. также== | ==См. также== | ||
− | * [[Покрытие | + | * [[Покрытие ребер графа путями]] |
* [[Алгоритм построения Эйлерова цикла]] | * [[Алгоритм построения Эйлерова цикла]] | ||