Произвольно вычерчиваемые из заданной вершины графы — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
[[Основные определения теории графов|Граф]] называется '''произвольно вычерчиваемым из  вершины <tex>v</tex>''' (англ. '''Arbitrarily traceable graph'''), если любая цепь с началом в вершине <tex>v</tex> может быть продолжена до эйлерового цикла графа <tex>G</tex>. <br>Любой произвольно вычерчиваемый из вершины <tex>v</tex> граф является [[Эйлеров цикл, Эйлеров путь, Эйлеровы графы, Эйлеровость орграфов|эйлеровым графом]]. }}
+
[[Основные определения теории графов|Граф]] называется '''произвольно вычерчиваемым из  вершины <tex>v</tex>''' (англ. ''Arbitrarily traceable graph''), если любая цепь с началом в вершине <tex>v</tex> может быть продолжена до эйлерового цикла графа <tex>G</tex>. <br>Любой произвольно вычерчиваемый из вершины <tex>v</tex> граф является [[Эйлеров цикл, Эйлеров путь, Эйлеровы графы, Эйлеровость орграфов|эйлеровым графом]]. }}
  
 
{{Теорема
 
{{Теорема
Строка 8: Строка 8:
 
|proof=
 
|proof=
 
[[Файл:ATG_part1.jpg|200px|right]]
 
[[Файл:ATG_part1.jpg|200px|right]]
<tex>\Longrightarrow</tex> Пусть в <tex>G</tex>  <tex>\exists</tex> цикл <tex>C, v \notin C</tex>.<br>
+
Необходимость. Пусть в <tex>G</tex>  <tex>\exists</tex> цикл <tex>C, v \notin C</tex>.<br>
 
Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). <tex>G_1</tex> {{---}} эйлеров, так как при удалении цикла все степени вершин остались четными. Значит в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>.
 
Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). <tex>G_1</tex> {{---}} эйлеров, так как при удалении цикла все степени вершин остались четными. Значит в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>.
 
[[Файл:ATG_part2.jpg|200px|left]]
 
[[Файл:ATG_part2.jpg|200px|left]]
<tex>\Longleftarrow</tex> Пусть дан эйлеров граф <tex>G</tex>, вершина <tex>v</tex> принадлежит всем его циклам.<br>
+
Достаточность. Пусть дан эйлеров граф <tex>G</tex>, вершина <tex>v</tex> принадлежит всем его циклам.<br>
 
Рассмотрим произвольный путь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. Возможно 2 случая:
 
Рассмотрим произвольный путь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. Возможно 2 случая:
  
Строка 30: Строка 30:
 
* Имеет только вершины четной степени;
 
* Имеет только вершины четной степени;
 
* Является произвольно вычерчиваемым из <tex>v</tex>, как эйлеров граф, у которого <tex>v</tex> принадлежит всем циклам.
 
* Является произвольно вычерчиваемым из <tex>v</tex>, как эйлеров граф, у которого <tex>v</tex> принадлежит всем циклам.
 +
Теперь докажем, почему таким образом можно получить все графы, произвольно вычерчиваемые из вершины <tex>v</tex>. Пусть какой-то такой граф нельзя получить методом описанным выше. Тогда уберем все ребра из вершины <tex>v</tex> и посмотрим на граф, который остался. Он не является лесом, иначе мы могли бы получить этот граф нашим методом. Но если он не является лесом, то в нем есть хотя бы один цикл, который не содержит <tex>v</tex>. Но по теореме о произвольно вычерчиваемымых из вершины графах такого быть не может. Следовательно наше предположение ошибочно.
  
 
==Источники==
 
==Источники==
''Асанов М., Баранский В., Расин В.'' Дискретная математика: Графы, матроиды, алгоритмы. Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. — С. 36. — ISBN 5-93972-076-5
+
* Асанов М., Баранский В., Расин В. ''Дискретная математика: Графы, матроиды, алгоритмы.'', Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. ISBN 5-93972-076-5
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Обходы графов]]
 
[[Категория: Обходы графов]]
 +
[[Категория: Эйлеровы графы]]

Версия 17:28, 28 января 2016

Определение:
Граф называется произвольно вычерчиваемым из вершины [math]v[/math] (англ. Arbitrarily traceable graph), если любая цепь с началом в вершине [math]v[/math] может быть продолжена до эйлерового цикла графа [math]G[/math].
Любой произвольно вычерчиваемый из вершины [math]v[/math] граф является эйлеровым графом.


Теорема:
Неодноэлементный эйлеров граф [math]G[/math] является произвольно вычерчиваемым из вершины [math]v[/math] [math]\Longleftrightarrow[/math] вершина [math]v[/math] принадлежит всем циклам графа [math]G[/math].
Доказательство:
[math]\triangleright[/math]
ATG part1.jpg

Необходимость. Пусть в [math]G[/math] [math]\exists[/math] цикл [math]C, v \notin C[/math].
Рассмотрим [math]G_1 = G/C[/math] (здесь и далее это означает удаление только ребер, не трогая вершины). [math]G_1[/math] — эйлеров, так как при удалении цикла все степени вершин остались четными. Значит в [math]G_1[/math] [math]\exists[/math] эйлеров цикл. Если начать обход по эйлерову циклу из [math]v[/math], то и закончится он в [math]v[/math]. Если теперь вернуть цикл [math]C[/math], то мы никак не сможем его обойти [math]\Rightarrow[/math] [math]G[/math] не свободно вычерчиваемый из [math]v[/math].

ATG part2.jpg

Достаточность. Пусть дан эйлеров граф [math]G[/math], вершина [math]v[/math] принадлежит всем его циклам.
Рассмотрим произвольный путь [math]P = (v,w)[/math]. Пусть [math]G_1 = G/P[/math]. Возможно 2 случая:

1. если [math]v = w[/math], то [math]P[/math] — цикл, значит степени всех вершин в [math]G_1[/math] остались четными [math]\Rightarrow[/math] [math]G_1[/math] — эйлеров.
2. если [math]v \neq w[/math], то так как [math]G[/math] эйлеров граф [math]\exists[/math] эйлеров путь [math](w,v) \in G_1[/math].

Покажем, что в обоих случаях эйлеров обход пройдет по всем ребрам [math]G_1[/math].

В [math]G[/math] [math]\exists[/math] единственная компонента связности, содержащая ребра. При удалении [math]P[/math] их количество не могло увеличится, иначе должен быть цикл, не содержащий [math]v[/math](смотри рисунок). Значит в [math]G_1[/math] [math]\exists[/math] единственная компонента связности содержащая ребра, причем [math]G_1[/math] хотя бы полуэйлеров [math]\Rightarrow[/math] в [math]G_1[/math] [math]\exists[/math] эйлерова цепь [math]Q = (w,v)[/math] [math]\Rightarrow[/math] [math]P+Q[/math] эйлеров цикл в графе [math]G[/math].
[math]\triangleleft[/math]

Строение

ATGexample.jpg

Опираясь на теорему опишем строение всех графов, произвольно вычерчиваемых из вершины [math]v[/math].
Возьмем произвольный лес [math]H[/math], не содержащий вершину [math]v[/math]. Каждую вершину нечетной степени соединим некоторым нечетным числом кратных ребер с [math]v[/math], а каждую вершину четной степени [math]-[/math] четным числом кратных ребер с [math]v[/math] (не исключая 0), причем каждую изолированную вершину обязательно соединим с [math]v[/math].
Полученный граф [math]G[/math]:

  • Связен;
  • Имеет только вершины четной степени;
  • Является произвольно вычерчиваемым из [math]v[/math], как эйлеров граф, у которого [math]v[/math] принадлежит всем циклам.

Теперь докажем, почему таким образом можно получить все графы, произвольно вычерчиваемые из вершины [math]v[/math]. Пусть какой-то такой граф нельзя получить методом описанным выше. Тогда уберем все ребра из вершины [math]v[/math] и посмотрим на граф, который остался. Он не является лесом, иначе мы могли бы получить этот граф нашим методом. Но если он не является лесом, то в нем есть хотя бы один цикл, который не содержит [math]v[/math]. Но по теореме о произвольно вычерчиваемымых из вершины графах такого быть не может. Следовательно наше предположение ошибочно.

Источники

  • Асанов М., Баранский В., Расин В. Дискретная математика: Графы, матроиды, алгоритмы., Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. ISBN 5-93972-076-5