Редактирование: Пространство линейных операторов
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 59: | Строка 59: | ||
<tex> \{e_i\}_{i=0}^{n}</tex> {{---}} базис <tex>X ;\quad \{h_k\}_{k=0}^{m}</tex> {{---}} базис <tex>Y</tex> | <tex> \{e_i\}_{i=0}^{n}</tex> {{---}} базис <tex>X ;\quad \{h_k\}_{k=0}^{m}</tex> {{---}} базис <tex>Y</tex> | ||
− | Рассмотрим <tex>\mathcal{E}_k^i \colon X \to Y </tex> по формуле <tex>\mathcal{E}_k^i | + | Рассмотрим <tex>\mathcal{E}_k^i \colon X \to Y </tex> по формуле <tex>\mathcal{E}_k^i \overset{\underset{\mathrm{def}}{}}{=} \xi^{i} h_k; \quad x \overset{\underset{\mathrm{!}}{}}{=} \sum\limits_{i=0}^{n} \xi^i e_i</tex> |
Матрица <tex>\mathcal{E}^i_k e_j = \delta^i_j h_k</tex> | Матрица <tex>\mathcal{E}^i_k e_j = \delta^i_j h_k</tex> |