Изменения

Перейти к: навигация, поиск

Пространство L p(E)

2963 байта добавлено, 23:24, 23 февраля 2015
викификация
Пусть <tex> E </tex> измеримо, <tex> p \ge 1 </tex>.
<tex> L_p(E) = \{f </tex> - [[Определение измеримой функции|измерима ]] на <tex> E, \int\limits_E {|f|}^p d \mu < + \infty \} </tex>, то есть пространство функций, суммируемых с <tex> p </tex>-ой степенью на <tex> E </tex>. Измеримость <tex> f </tex> на <tex> E </tex> принципиальна, так как в общем случае из измеримости <tex> |f|^p </tex> не вытекает измеримость <tex> f </tex>.
Пример, который подтверждает это:
<tex> E_1 </tex> - не измеримо и содержится в <tex> E </tex>.
<tex> f(x) = \begin{cases} 1, & x \in E \setminus E_1 \\ -1, & x \in E_1 \end{cases} </tex> — не измерима на <tex> E </tex>, так как ее множество Лебега <tex> E(f(x) \le -1) = E_1 </tex> - неизмеримо.
Но <tex> |f(x)|^p = 1 </tex> на <tex> E </tex> уже будет измеримой. Значит, из измеримости модуля не вытекает измеримость функции.
<tex> E = E_1 \cup E_2 </tex>.
Тогда <tex> \int\limits_E |f + g|^p \le \int\limits_E (|f| + |g|)^p = \int\limits_{E_1} + \int\limits_{E_2} \le \int\limits_{E_1} (2 |g|)^p + \int\limits_{E_2} (2 |f|)^p \le 2^p (\int\limits_{E_1} |f|^p + \int\limits_{E_2} |g|^p) < + \infty </tex>
2) Если <tex> \int \limits_E |f|^p < +\infty </tex>, то и <tex> \int \limits_E |\alpha f|^p = |\alpha|^p \int \limits_E |f|^p < +\infty </tex>.
{{Теорема
|statement=
<tex> L_p(E) </tex> с нормой, определенной как <tex> ||f||_p = \left( \int\limits_E |f|^p \right)^{1/p} </tex> — [[Нормированные пространства|нормированное пространство]].
|proof=
1) <tex> ||f||_p \ge 0</tex>, так как корень <tex>p</tex>-ой степени; <tex> ||f||_p = 0 \Leftrightarrow f = 0 </tex> — отождествление функции, совпадают почти всюду. {{TODO|t=ШТО}}
2) <tex> ||\alpha f||_p = |\alpha| ||f||_p </tex> — напрямую следует из линейности интеграла.
<tex> f_n \in L_p(E) </tex>
Прежде чем выяснить ответ на этот вопрос, посмотрим, что происходит с [[Определение интеграла Римана, простейшие свойства|интегралом Римана]]:
Пусть <tex> E = [a, b], \lambda </tex> — мера Лебега на <tex> E </tex>.
Примечание: на этапе выделения подпоследовательности <tex> f_{n_k} </tex>, стремящейся к <tex> f </tex> почти всюду, может получиться, что <tex> f </tex> — не интегрируема по Риману.
}}
 
== Всюду плотность <tex>C</tex> в <tex>L_p</tex> ==
 
{{Теорема
|statement=
Измеримые ограниченные функции образуют всюду плотное множество в <tex>L_p</tex>
|proof=
По абсолютной непрерывности интеграла для любого <tex>\varepsilon</tex> существует <tex>\delta</tex> такое, что для <tex>A \subset E</tex> из <tex>\mu A < \delta</tex> следует <tex>\left| \int\limits_A f^p d\mu \right| < \varepsilon^p</tex>.
 
Далее, рассмотрим множества <tex>A_n = E(|f| > n)</tex>. Очевидно, <tex>\bigcap\limits_{n = 1}^\infty A_n = \varnothing</tex> и <tex>A_{n + 1} \subset A_n</tex>, следовательно, <tex>\lim\limits_{n \rightarrow \infty} \mu A_n = 0</tex>. Значит, найдётся такое <tex>k</tex>, что <tex>\mu A_k < \delta</tex>. Положим <tex>g(x) = f(x)</tex>, если <tex>x \notin A_k</tex> и <tex>g(x) = 0</tex> иначе. Эта функция измерима и ограничена.
 
Тогда <tex>\|f - g\|^p = \left| \int\limits_E (f - g)^p d\mu \right| = \left| \int\limits_{E(f \neq g)} (f - g)^p \right| = \left| \int\limits_{E(f \neq g)} f^p \right| < \varepsilon^p</tex>, то есть, <tex>\|f - g\| < \varepsilon</tex>. Значит, измеримые ограниченные функции образуют всюду плотное множество в <tex>L_p</tex>.
}}
 
{{Теорема
|statement=
Непрерывные функции образуют всюду плотное множество в <tex>L_p</tex>
|proof=
Пусть <tex>f \in L_p</tex>, подберём ограниченную <tex>g</tex>, такую, что <tex>\|f - g\| < \varepsilon / 2</tex>. Пусть <tex>|g| \le K</tex>. По теореме Лузина существует такая непрерывная функция <tex>\varphi</tex>, что <tex>\mu E(\varphi \neq g) < \frac{\varepsilon^p}{(4K)^p}</tex> и <tex>|\varphi| \le K</tex>. Тогда <tex>\|\varphi - g\|^p = \int\limits_E (\varphi - g)^p d\mu = \int\limits_{E(\varphi \neq g)} (\varphi - g)^p \le (2K)^p \cdot \mu E(\varphi \neq g) < (\varepsilon / 2)^p</tex>, то есть <tex>\|\varphi - g\| < \varepsilon / 2</tex>.
 
По неравенству треугольника, <tex>\|f - \varphi\| < \varepsilon</tex>, следовательно, непрерывные функции образуют всюду плотное множество в <tex>L_p</tex>.
}}
[[Классические теоремы о предельном переходе под знаком интеграла Лебега|<<]][[Мера подграфика|>>]]
[[Категория:Математический анализ 2 курс]]
Анонимный участник

Навигация