Изменения

Перейти к: навигация, поиск
м
до третьего пункта
Считаем далее, что интеграл равномерно сходится на $ [c; d] $.
=== Пункт 1 . Непрерывность ===$ F(y) = \int\limits_a^{\infty} f(x, y) dx \stackrel{?}{\Rightarrow} \Delta fF(y) \xrightarrow[\Delta y \to 0]{} 0 $ (непр. F(y)).
Доказательство ведем по аналогии с рядами.
$ | \Delta y | < \delta \Rightarrow | \Delta F(y) | < 3 \varepsilon $, то есть доказали непрерывность по произвольности $ \varepsilon $.
=== Пункт 2. Повторное интегрирование. ===
Установим формулу повторного интегрирования . Логика действия другая, из-за рассмотрения несобственных интегралов.
Надо установить формулу:
 
$ \int\limits_c^d dy \int\limits_a^{\infty} f(x, y) dx = \int\limits_a^{\infty} dx \int\limits_c^d f(x,y) dy $
 
В условиях непрерывности f на полосе и равномерной сходимости интегралов при $ A > a $, верна формула
$ \int\limits_a^A dx \int\limits_c^d f(x, y) dy = \int\limits_c^d dy \int\limits_a^A f(x, y) dx $.
 
В силу предыдущего параграфа:
 
$ \int\limits_c^d dy \int\limits_a^{\infty} f(x, y) dx = \int\limits_c^d dy \left( \int\limits_a^A f(x, y) dx + \int\limits_A^{\infty} f(x, y) dx \right) = \\
= \int\limits_c^d dy \int\limits_a^A f(x, y) dx + \int\limits_c^d dy \int\limits_A^{\infty} f(x, y) dx = \\
= \int\limits_a^A dx \int\limits_c^d f(x, y) dy + \int\limits_c^d dy \int\limits_A^{\infty} f(x, y) dx = $
 
Отметим, что интегралы существуют по пункту 1 (непрерывность F по y).
 
$ \forall \varepsilon > 0 $, по равномерной сходимости $ \exists A_0 : \forall A > A_0, \forall y \in [c; d]: \left| \int\limits_A^{\infty} f(x, y) dx \right|\le \varepsilon $
 
Значит, $ \left| \int\limits_c^d dy \int\limits_A^{\infty} f(x, y) dy \right| \le \int\limits_c^d \varepsilon dy = (d - c) \varepsilon $, то есть сколь угодно мал.
 
$ \left| \int\limits_c^d dy \int\limits_a^{\infty} f(x, y) dx - \int\limits_a^A dx \int\limits_c^d f(x, y) dy \right| \le (d - c) \varepsilon \quad \forall A \ge A_0 $
 
В силу произвольности $ \varepsilon $:
 
$ \int\limits_a^A dx \int\limits_c^d f(x, y) dy \xrightarrow[A \to \infty]{} \int\limits_c^d dy \int\limits_a^{\infty} f(x, y) dx $.
 
По определению несобственного интеграла, формула верна.
 
Замечание: можно поставить вопрос:
 
$ \int\limits_a^{\infty} dy \int\limits_c^{\infty} f(x, y) dx = \int\limits_c^{\infty} dx \int\limits_a^{\infty} f(x, y) dy $ - решается, как правило, намного труднее.
 
В ряде частных случаев, ответ будет положительным.
 
Если $ f(x, y) $ - непрерывна, $ x \ge a, y \ge c $, считаем, что $ f(x, y) \ge 0 $, то можно утверждать, что существует повторный интеграл справа, существует интеграл справа, и они равны(упражнение средней сложности).
 
В теории интеграла Лебега будет доказана знаменитая теорема Рубини, связанная с этой тематикой и полностью решает этот вопрос(на языке интеграла Лебега).
</wikitex>
[[Категория: Математический анализ 1 курс]]

Навигация