Редактирование: Разложение рациональной функции в ряд

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 5: Строка 5:
 
{{Определение  
 
{{Определение  
 
|definition=
 
|definition=
'''Рациональная функция''' (англ. ''Rational function'') {{---}} это функция вида:
+
'''Рациональная функция''' это функция вида:
 
<center>
 
<center>
 
<tex>G(z)=\dfrac{P(z)}{Q(z)}</tex>,  
 
<tex>G(z)=\dfrac{P(z)}{Q(z)}</tex>,  
 
</center>
 
</center>
где <tex>P</tex> и <tex>Q</tex> {{---}} полиномы.  
+
где <tex>P</tex> и <tex>Q</tex> - полиномы.  
 
}}
 
}}
  
Строка 17: Строка 17:
 
{{Определение  
 
{{Определение  
 
|definition=
 
|definition=
'''Элементарными дробями''' (англ. ''Simple partial fractions'') будем называть дроби вида:
+
'''Элементарными дробями''' будем называть дроби вида:
 
 
 
<center>
 
<center>
<tex>\dfrac{A}{(x-a)^n}, \qquad  \dfrac{P(x)}{(Q(x))^m}</tex>,  
+
<tex>\dfrac{A}{(x-a)^n}, \qquad  \dfrac{Bx + C}{(x^2 + px + q)^m}</tex>,  
 
</center>
 
</center>
где <tex> m, n \geqslant 1</tex>, <tex>P(x), Q(x)</tex> {{---}} полиномы, причем <tex>Q(x)</tex> {{---}} полином, не имеющий рациональных корней и <tex>\deg(P) < \deg(Q)</tex>.
+
где <tex> m, n \geqslant 1</tex>, и  <tex>p^2 - 4q < 0</tex>  
 
}}
 
}}
 +
<br>
 +
Затем, элементарные дроби сможем разложить в ряд, пользуясь [[Арифметические действия с формальными степенными рядами|формулами преобразования производящих функций]] и [[Производящая функция#Примеры простых производящих функций|таблицей производящих функций]].
 +
<br>
  
 
==Общий алгоритм==
 
==Общий алгоритм==
Строка 32: Строка 34:
 
# Приравнять полученные выражения с неопределёнными коэффициентами к соответсвующим коэффициентам полинома <tex>P(z)</tex>, составив, таким образом, систему линейных уравнений.
 
# Приравнять полученные выражения с неопределёнными коэффициентами к соответсвующим коэффициентам полинома <tex>P(z)</tex>, составив, таким образом, систему линейных уравнений.
 
# Решить систему и получить значения неопределённых коэффициентов.
 
# Решить систему и получить значения неопределённых коэффициентов.
# Представить получившиеся дроби в виде рядов, пользуясь [[Арифметические действия с формальными степенными рядами|формулами преобразования производящих функций]] и [[Производящая функция#Примеры простых производящих функций|таблицей производящих функций]].
 
  
===Примеры===
+
==Примеры==
 +
Разложить в ряд функцию  <center><tex> G(z)=\dfrac{8+4z}{1-z-z^2+z^3}.</tex> </center>
 +
 
 +
Разложим знаменатель функции на множители <center><tex> 1-z-z^2+z^3=(1+z)(1-z)^2,</tex></center>
 +
 
 +
тогда <center><tex>G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{8+4z}{(1+z)(1-z)^2}.</tex></center>
 +
 
 +
Представим функцию на сумму двух дробей, причем у первой в числителе будет полином степени <tex>0</tex>, а у второй степени <tex>1</tex>
 +
<center><tex>G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2},</tex></center>
 +
где <tex>A, B</tex> и <tex>C</tex> — некоторые константы. Для того, чтобы найти эти константы, нужно сложить дроби:
 +
<center><tex>\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2}=\dfrac{A(1-z)^2+(Bz+C)(1+z)}{(1+z)(1-z)^2}=\dfrac{(A+B)z^2+(B+C-2A)z+(A+C)}{(1+z)(1-z)^2}=\dfrac{8+4z}{(1+z)(1-z)^2}.</tex></center>
 +
Из последнего равенства, сравниваем коэффициенты при соответствующих степенях в числителе<br>
 +
<tex>A+B=0</tex> - это коэффициент при <tex>z^2</tex>,<br>
 +
<tex>B+C-2A=4</tex> - это коэффициент при <tex>z^1</tex>,<br>
 +
<tex>A+C=8</tex> - это коэффициент при <tex>z^0</tex>.
 +
 
 +
Решая систему из трех уравнений, находим <br>
 +
<tex>A=1</tex>,<br>
 +
<tex>B=-1</tex>,<br>
 +
<tex>C=7</tex>.
  
#Разложить в ряд функцию  <tex> G(z)=\dfrac{8+4z}{1-z-z^2+z^3}.</tex>
+
Получаем
#:Разложим знаменатель функции на множители: <tex> 1-z-z^2+z^3=(1+z)(1-z)^2</tex>, тогда <tex>G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{8+4z}{(1+z)(1-z)^2}.</tex>
+
<center><tex>
#:Представим функцию на сумму двух дробей, причем у первой в числителе будет полином степени <tex>0</tex>, а у второй степени <tex>1</tex>:
+
\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2} =\dfrac{1}{1+z}+\dfrac{-z+7}{(1-z)^2}=\dfrac{1}{1+z}+\dfrac{7}{(1-z)^2}-\dfrac{z}{(1-z)^2}.
#:<tex>G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2}</tex>, где <tex>A, B</tex> и <tex>C</tex> — некоторые константы.
+
</tex></center>
#:Для того, чтобы найти эти константы, нужно сложить дроби:
 
#:<tex>\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2}=\dfrac{A(1-z)^2+(Bz+C)(1+z)}{(1+z)(1-z)^2}=\dfrac{(A+B)z^2+(B+C-2A)z+(A+C)}{(1+z)(1-z)^2}=\dfrac{8+4z}{(1+z)(1-z)^2}.</tex>
 
#:Из последнего равенства, сравниваем коэффициенты при соответствующих степенях в числителе<br>
 
#:<tex>A+B=0</tex> {{---}} это коэффициент при <tex>z^2</tex>,<br>
 
#:<tex>B+C-2A=4</tex> {{---}} это коэффициент при <tex>z^1</tex>,<br>
 
#:<tex>A+C=8</tex> {{---}} это коэффициент при <tex>z^0</tex>.
 
#:Решая систему из трех уравнений, находим <br>
 
#:<tex>A=1</tex>,<br>
 
#:<tex>B=-1</tex>,<br>
 
#:<tex>C=7</tex>.
 
#:Получаем: <tex>\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2} =\dfrac{1}{1+z}+\dfrac{-z+7}{(1-z)^2}=\dfrac{1}{1+z}+\dfrac{7}{(1-z)^2}-\dfrac{z}{(1-z)^2}.</tex>
 
#:Эти дроби разложим в ряд, пользуясь таблицей производящих функций и формулами преобразования:
 
#:<tex>\dfrac{1}{1+z}=\sum_{n=0}^\infty (-1)^n z^n </tex>
 
#:<tex>\dfrac{7}{(1-z)^2}=\sum_{n=0}^\infty 7(n+1) z^n </tex>
 
#:<tex>\dfrac{z}{(1-z)^2}=\sum_{n=0}^\infty n z^n .</tex>
 
#:Тогда <tex> G(z)=\sum_{n=0}^\infty (7(n+1)-n+(-1)^n)z^n=\sum_{n=0}^\infty (6n+7+(-1)^n)z^n</tex>
 
#:или <tex>[z^n]G(z) = 6n+7+(-1)^n, \qquad n \geqslant 0</tex>.
 
#Разложить в ряд рациональную функцию <tex>G(z)=\dfrac{8-46z+89z^2-59z^3}{1-8z+23z^2-28z^3+12z^4}.</tex>
 
#:Разбив знаменатель на множители, получаем: <tex>\dfrac{8-46z+89z^2-59z^3}{1-8z+23z^2-28z^3+12z^4}=\dfrac{A}{1-z}+\dfrac{Bz+C}{(1-2z)^2}+\dfrac{D}{1-3z}.</tex>
 
#:Приведём все дроби к общему знаменателю: <tex>\dfrac{(-12A+3B-4D)z^3+(16A-4B+3C+8D)z^2+(-7A+B-4C-5D)z+A+C+D}{(1-z)(1-2z)^2(1-3z)}.</tex>
 
#:Решаем систему линейных уравнений:
 
#:<tex>-12A+3B-4D=-59</tex>
 
#:<tex>16A-4B+3C+8D=89</tex>
 
#:<tex>-7A+B-4C-5D=-46</tex>
 
#:<tex>A+C+D=8</tex>
 
#:Решение этой системы:
 
#:<tex>A=4, B=3, C=−1, D=5.</tex>
 
#:Это означает, что <tex>G(z)= \dfrac{4}{1-z} + \dfrac{3z}{(1-2z)^2} -\dfrac{1}{(1-2z)^2} + \dfrac{5}{1-3z}.</tex>
 
#:Теперь каждую дробь можно разложить в ряд, пользуясь таблицей:
 
#:<tex>G(z) = 4\sum_{n=0}^\infty z^n + 3\sum_{n=0}^\infty n2^{n-1}z^n-\sum_{n=0}^\infty (n+1) 2^n z^n+5\sum_{n=0}^\infty 3^n z^n.</tex>
 
#:То есть
 
#:<tex>[z^n]G(z) = 5\cdot3^n + 3n2^{n-1} - (n+1)2^n+4= 5\cdot3^n+n2^{n-1}-2^n+4</tex>
 
#:<tex>G(z) = 8+18z+49z^2+143z^3+425z^4+1267z^5+3777z^6+11259z^7+O(z^{8}).</tex>
 
  
==Проблема==
+
Эти дроби разложим в ряд, пользуясь таблицей производящих функций и формулами преобразования:
На практике могут появиться рациональные функции, знаменатели которых не имееют действительных корней, тогда разбить эти фукции на более простые части не получится, что усложнит разложение в ряд. <br>
+
<center><math>
Например, производящая функция, генерирующая количество гамильтоновых циклов на прямоугольной решётке размером <tex>6 \times n</tex> <ref>[http://oeis.org/ The On-Line Encyclopedia of Integer Sequences]</ref>.
+
<tex>\dfrac{1}{1+z}=\sum_{n=0}^\infty (-1)^n z^n </tex>
<center>
 
<tex>
 
G(z)=\dfrac{z(1-z)(z^{11}-z^{10}+3z^9+12z^8-3z^7-3z^4+21z^3-3z^2-1)}{2z^{14}-4z^{13}+28z^{12}+42z^{11}-82z^{10}-8z^9+118z^8-66z^7-35z^6+90z^5+12z^4-63z^3+14z^2+5z-1}.
 
</tex>
 
</center>
 
  
==См. также==
 
* [[Производящая функция]]
 
* [[Арифметические действия с формальными степенными рядами]]
 
* [[Производящие функции нескольких переменных]]
 
  
== Примечания ==
+
<tex>\dfrac{7}{(1-z)^2}=\sum_{n=0}^\infty 7(n+1) z^n </tex>
<references/>
 
  
== Источники информации ==
+
* [http://www.genfunc.ru/ Производящие функции]
+
<tex>\dfrac{z}{(1-z)^2}=\sum_{n=0}^\infty n z^n .</tex>
 +
</math>
 +
</center>
  
[[Категория: Дискретная математика и алгоритмы]]
+
Тогда
[[Категория: Производящая функция]]
+
<center>
 +
<tex> G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\sum_{n=0}^\infty (7(n+1)-n+(-1)^n)z^n=\sum_{n=0}^\infty (6n+7+(-1)^n)z^n</tex>
 +
</center>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: