Разложение рациональной функции в ряд — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Общий алгоритм)
(Общий алгоритм)
Строка 28: Строка 28:
  
 
==Общий алгоритм==
 
==Общий алгоритм==
# Привести дробь <tex>\dfrac{P(z)}{Q(z)}</tex> к такому виду, чтобы степень числителя была меньше степени знаменателя.Если deg(P) > deg(Q), то можем записать <tex>G(z)=\dfrac{P(z)}{Q(z)} = R(z)+\dfrac{P0(z)}{Q(z)}</tex>, где deg(P0) < deg(Q)
+
# Привести дробь <tex>\dfrac{P(z)}{Q(z)}</tex> к такому виду, чтобы степень числителя была меньше степени знаменателя.Если <tex>deg(P) > deg(Q)</tex>, то можем записать <tex>G(z)=\dfrac{P(z)}{Q(z)} = R(z)+\dfrac{P0(z)}{Q(z)}</tex>, где <tex>deg(P0) < deg(Q)</tex>.
 
# Разобьем знаменатель Q(z) на множители Q(z) = (zk-z)^k1 *..., где z1, z2, ..., zs - корни уравнения Q(z) = 0. При этом, k1+k2+⋅⋅⋅+ks=deg Q После разбиения знаменателя на множители получим: <tex>G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks}</tex> (k1, ks - сделать индексами)  
 
# Разобьем знаменатель Q(z) на множители Q(z) = (zk-z)^k1 *..., где z1, z2, ..., zs - корни уравнения Q(z) = 0. При этом, k1+k2+⋅⋅⋅+ks=deg Q После разбиения знаменателя на множители получим: <tex>G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks}</tex> (k1, ks - сделать индексами)  
 
# Приведем G(z) к сумме дробей, знаменатели которых будут иметь вид (zj−z)^kj, а числители — полиномы Pj(z), причем deg Pj(z)<kj. <tex>G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks} = \sum\limits \dfrac{Pj(z)}{(zj-z)^kj}</tex>. Найдем Pj(z) с помощью [[Разложение рациональной функции в ряд#Метод неопределенных коэффициентов|метода неопределенных коэффициентов]].  
 
# Приведем G(z) к сумме дробей, знаменатели которых будут иметь вид (zj−z)^kj, а числители — полиномы Pj(z), причем deg Pj(z)<kj. <tex>G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks} = \sum\limits \dfrac{Pj(z)}{(zj-z)^kj}</tex>. Найдем Pj(z) с помощью [[Разложение рациональной функции в ряд#Метод неопределенных коэффициентов|метода неопределенных коэффициентов]].  

Версия 10:47, 28 мая 2017

Определения

Определение:
Рациональная функция — это функция вида:

[math]G(z)=\dfrac{P(z)}{Q(z)}[/math],

где [math]P[/math] и [math]Q[/math] - полиномы.


Рациональные производящие функции получаются при решении линейных рекуррентных соотношений. По этой причине актуальной является задача о разложении рациональной функции в ряд по степеням переменной [math]z[/math].
Чтобы разложить дробь в ряд, необходимо разбить её на сумму элементарных дробей.

Определение:
Элементарными дробями будем называть дроби вида:

[math]\dfrac{A}{(x-a)^n}, \qquad \dfrac{Bx + C}{(x^2 + px + q)^m}[/math],

где [math] m, n \geqslant 1[/math], и [math]p^2 - 4q \lt 0[/math]


Затем, элементарные дроби сможем разложить в ряд, пользуясь формулами преобразования производящих функций и таблицей производящих функций.

Общий алгоритм

  1. Привести дробь [math]\dfrac{P(z)}{Q(z)}[/math] к такому виду, чтобы степень числителя была меньше степени знаменателя.Если [math]deg(P) \gt deg(Q)[/math], то можем записать [math]G(z)=\dfrac{P(z)}{Q(z)} = R(z)+\dfrac{P0(z)}{Q(z)}[/math], где [math]deg(P0) \lt deg(Q)[/math].
  2. Разобьем знаменатель Q(z) на множители Q(z) = (zk-z)^k1 *..., где z1, z2, ..., zs - корни уравнения Q(z) = 0. При этом, k1+k2+⋅⋅⋅+ks=deg Q После разбиения знаменателя на множители получим: [math]G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks}[/math] (k1, ks - сделать индексами)
  3. Приведем G(z) к сумме дробей, знаменатели которых будут иметь вид (zj−z)^kj, а числители — полиномы Pj(z), причем deg Pj(z)<kj. [math]G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks} = \sum\limits \dfrac{Pj(z)}{(zj-z)^kj}[/math]. Найдем Pj(z) с помощью метода неопределенных коэффициентов.


Метод неопределенных коэффициентов

  1. Записать сумму дробей, знаменатили которых будут иметь вид (zs−z)ks, а числители — полиномы с неопределёнными коэффициентами, имеющие степень ks−1.
  2. Сложить выписанные дроби и сгруппировать слагаемые в числителе по степеням z.
  3. Прировнять полученные выражения с неопределёнными коэффициентами к соответсвующим коэффициентам полинома P(z), составив, таким образом, систему линейных уравнений.
  4. Решить систему и получить значения неопределённых коэффициентов.

Примеры