Ранговая функция, полумодулярность — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Полумодулярность ранговой функции)
Строка 8: Строка 8:
 
{{Лемма
 
{{Лемма
 
|id=lemma
 
|id=lemma
|statement= Дан матроид <tex> M = \langle X, I \rangle</tex> и множество <tex>A \subset X</tex>. Пусть также <tex>B \subset A</tex>, <tex>B \in I</tex>, тогда существует <tex>D : B\subset D \subset A, D \in I, |D| = rg(A)</tex>.
+
|statement= Дан матроид <tex> M = \langle X, I \rangle</tex> и множество <tex>A \subset X</tex>. Пусть также <tex>B \subset A</tex>, <tex>B \in I</tex>, тогда существует <tex>D : B\subset D \subset A, D \in I, |D| = r(A)</tex>.
 
|proof=
 
|proof=
Пусть <tex>E</tex> {{---}} подмножество <tex>A</tex> такое, что <tex>rg(A) = |E|, E \in I</tex> (по определению ранговой функции такое <tex>E</tex> всегда существует.   
+
Пусть <tex>E</tex> {{---}} подмножество <tex>A</tex> такое, что <tex>r(A) = |E|, E \in I</tex> (по определению ранговой функции такое <tex>E</tex> всегда существует.   
Предположим, что это не так и максимальное независимое подмножество, которое мы можем получить из <tex>B</tex> добавляя элементы из <tex>A</tex> {{---}} это <tex>C</tex>, причем <tex>|C| < rg(A)</tex>. Тогда имеем: <tex>C \in I, E \in I, |C| < |E|</tex>, следовательно существует элемент <tex>x \in E \setminus C: C \cup \{x\} \in I</tex>. Заметим также что <tex>|C \cup {x}| = |C| + 1 > |C|</tex> и <tex>x \in A</tex>, т.к. <tex>E \setminus C \subset A</tex>, <tex>B \subset C \subset C \cup \{x\}</tex>. Итак пришли к противоречию, мы получили множество большее по мощности, чем <tex>C</tex> такое, что <tex>B \subset C \subset A, C \in I</tex>, значит исходное предположение было не верно, и мы можем найти множество <tex>D</tex> удовлетворяющее необходимым условиям.
+
Предположим, что это не так и максимальное независимое подмножество, которое мы можем получить из <tex>B</tex> добавляя элементы из <tex>A</tex> {{---}} это <tex>C</tex>, причем <tex>|C| < r(A)</tex>. Тогда имеем: <tex>C \in I, E \in I, |C| < |E|</tex>, следовательно существует элемент <tex>x \in E \setminus C: C \cup \{x\} \in I</tex>. Заметим также что <tex>|C \cup {x}| = |C| + 1 > |C|</tex> и <tex>x \in A</tex>, т.к. <tex>E \setminus C \subset A</tex>, <tex>B \subset C \subset C \cup \{x\}</tex>. Итак пришли к противоречию, мы получили множество большее по мощности, чем <tex>C</tex> такое, что <tex>B \subset C \subset A, C \in I</tex>, значит исходное предположение было не верно, и мы можем найти множество <tex>D</tex> удовлетворяющее необходимым условиям.
 
}}
 
}}
  
Строка 20: Строка 20:
 
|statement=Пусть дан матроид <tex> M = \langle X, I \rangle</tex>, тогда <tex>\forall A, B \subset X,</tex> <tex>r(A \cup B) + r(A \cap B) \le r(A) + r(B)</tex>
 
|statement=Пусть дан матроид <tex> M = \langle X, I \rangle</tex>, тогда <tex>\forall A, B \subset X,</tex> <tex>r(A \cup B) + r(A \cap B) \le r(A) + r(B)</tex>
 
|proof=  
 
|proof=  
Рассмотрим множество <tex>D_\cap \subset A \cap B : D_\cap \in I, |D_\cap| = r(A \cap B)</tex>, такое всегда существует по определению <tex>r</tex>. Дополним множество <tex>D_\cap</tex> элементами из <tex>B \setminus D_\cap</tex> до множества <tex>D_B : |D_B| = rg (B), D_B \in I</tex> (по [[#lemma|лемме]] такое возможно).  
+
Рассмотрим множество <tex>D_\cap \subset A \cap B : D_\cap \in I, |D_\cap| = r(A \cap B)</tex>, такое всегда существует по определению <tex>r</tex>. Дополним множество <tex>D_\cap</tex> элементами из <tex>B \setminus D_\cap</tex> до множества <tex>D_B : |D_B| = r (B), D_B \in I</tex> (по [[#lemma|лемме]] такое возможно).  
  
Далее дополним <tex>D_B</tex> элементами из <tex>A \cup B \setminus D_B</tex> до множества <tex>D_\cup : |D_\cup| = rg(A \cup B), D_\cup \in I</tex>. Заметим, что на последнем шаге будут добавляться только элемента из <tex>A</tex>, т.к. пусть на том этапе мы взяли <tex>x \in B</tex>, тогда <tex>\{x\} \cup D_B \subset D_\cup, D_\cup \in I </tex>, следовательно <tex>\{x\} \cup D_B \in I</tex> (по [[Определение матроида]]), а также<tex>|\{x\} \cup D_B| = |D_B| + 1 = r(B) + 1</tex>, что невозможно по определению <tex>r</tex>.  
+
Далее дополним <tex>D_B</tex> элементами из <tex>A \cup B \setminus D_B</tex> до множества <tex>D_\cup : |D_\cup| = r(A \cup B), D_\cup \in I</tex>. Заметим, что на последнем шаге будут добавляться только элемента из <tex>A</tex>, т.к. пусть на том этапе мы взяли <tex>x \in B</tex>, тогда <tex>\{x\} \cup D_B \subset D_\cup, D_\cup \in I </tex>, следовательно <tex>\{x\} \cup D_B \in I</tex> (по [[Определение матроида]]), а также<tex>|\{x\} \cup D_B| = |D_B| + 1 = r(B) + 1</tex>, что невозможно по определению <tex>r</tex>.  
  
 
Заметим также, что   
 
Заметим также, что   

Версия 22:11, 26 июня 2011

Определение:
Пусть дан матроид [math] M = \langle X, I \rangle[/math]. Ранговая функция [math]r: A \subset X \to Z_+[/math] определяется как: [math]r(A) = \max \{ |B| : B \subset A, B \in I\}[/math]


Полумодулярность ранговой функции

Докажем свойство полумодулярности ранговой функции: [math]\forall A, B \subset X,[/math] [math]r(A \cup B) + r(A \cap B) \le r(A) + r(B)[/math]. Для начала небольшая лемма.

Лемма:
Дан матроид [math] M = \langle X, I \rangle[/math] и множество [math]A \subset X[/math]. Пусть также [math]B \subset A[/math], [math]B \in I[/math], тогда существует [math]D : B\subset D \subset A, D \in I, |D| = r(A)[/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math]E[/math] — подмножество [math]A[/math] такое, что [math]r(A) = |E|, E \in I[/math] (по определению ранговой функции такое [math]E[/math] всегда существует.

Предположим, что это не так и максимальное независимое подмножество, которое мы можем получить из [math]B[/math] добавляя элементы из [math]A[/math] — это [math]C[/math], причем [math]|C| \lt r(A)[/math]. Тогда имеем: [math]C \in I, E \in I, |C| \lt |E|[/math], следовательно существует элемент [math]x \in E \setminus C: C \cup \{x\} \in I[/math]. Заметим также что [math]|C \cup {x}| = |C| + 1 \gt |C|[/math] и [math]x \in A[/math], т.к. [math]E \setminus C \subset A[/math], [math]B \subset C \subset C \cup \{x\}[/math]. Итак пришли к противоречию, мы получили множество большее по мощности, чем [math]C[/math] такое, что [math]B \subset C \subset A, C \in I[/math], значит исходное предположение было не верно, и мы можем найти множество [math]D[/math] удовлетворяющее необходимым условиям.
[math]\triangleleft[/math]

Итак теперь мы готовы доказать свойство полумодулярности ранговой функции.

Теорема:
Пусть дан матроид [math] M = \langle X, I \rangle[/math], тогда [math]\forall A, B \subset X,[/math] [math]r(A \cup B) + r(A \cap B) \le r(A) + r(B)[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим множество [math]D_\cap \subset A \cap B : D_\cap \in I, |D_\cap| = r(A \cap B)[/math], такое всегда существует по определению [math]r[/math]. Дополним множество [math]D_\cap[/math] элементами из [math]B \setminus D_\cap[/math] до множества [math]D_B : |D_B| = r (B), D_B \in I[/math] (по лемме такое возможно).

Далее дополним [math]D_B[/math] элементами из [math]A \cup B \setminus D_B[/math] до множества [math]D_\cup : |D_\cup| = r(A \cup B), D_\cup \in I[/math]. Заметим, что на последнем шаге будут добавляться только элемента из [math]A[/math], т.к. пусть на том этапе мы взяли [math]x \in B[/math], тогда [math]\{x\} \cup D_B \subset D_\cup, D_\cup \in I [/math], следовательно [math]\{x\} \cup D_B \in I[/math] (по Определение матроида), а также[math]|\{x\} \cup D_B| = |D_B| + 1 = r(B) + 1[/math], что невозможно по определению [math]r[/math].

Заметим также, что

[math](D_\cup \setminus D_B) \cup D_\cap \subset A[/math], [math](D_\cup \setminus D_B) \cup D_\cap \in I[/math]

(по Определение матроида), значит (по определению ранговой функции)

[math]r(A) \ge |(D_\cup \setminus D_B) \cup D_\cap| = |D_\cup| - |D_B| + |D_\cap|[/math]

Заменяя мощности на ранги:

[math]r(A) + r(B) \ge r(A \cup B) + r(A \cap B) [/math]

Что и требовалось доказать.
[math]\triangleleft[/math]