Изменения

Перейти к: навигация, поиск

Регуляризация

41 байт добавлено, 18:50, 21 января 2020
Нет описания правки
Переобучение в большинстве случаев проявляется в том, что итоговые модели имеют слишком большие значения параметров. Соответственно, необходимо добавить в целевую функцию штраф за это. Наиболее часто используемые виды регуляризации {{---}} <tex>L_{1}</tex> и <tex >L_{2}</tex>, а также их линейная комбинация {{---}} эластичная сеть.
В представленных ниже формулах для эмпирического риска <tex>Q</tex>: <tex>\mathcal{L}</tex> является функцией потерь, а <tex>\beta</tex> {{---}} вектором параметров элемента <tex>g(x, \beta)</tex> из [[Модель алгоритма и ее выбор | модели алгоритмов]].
===<tex>L_{2}</tex>-регуляризация===
===Нейронные сети===
Регуляризация также используется и в [[Нейронные сети, перцептрон | нейронных сетях]] для борьбы со слишком большими весами сети и переобучением. Однако, в этом случае зануление коэффициентов при использовании $L_{1}$-регуляризатора не несет в себе смысл "отбора признаков", как в случае с линейными моделями. Регуляризация К сожалению, регуляризация не снижает число параметров и не упрощает структуру сети.
Для нейронной сети помимо добавления штрафного слагаемого к эмпирическому риску активно используют и другой метод регуляризации борьбы с переобучением {{---}} ''прореживание сети'' (англ. ''dropout''), в ходе которого упрощают сеть, руководствуясь правилом {{---}} если функция ошибки не изменяется, то сеть можно упрощать и дальше. Подробнее об этом можно почитать в статье, рассказывающей о [[Практики реализации нейронных сетей | практике реализации нейронных сетей]].
==См. также==
193
правки

Навигация