Сведение по Карпу — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определение)
(Доказательство транзитивности)
Строка 27: Строка 27:
  
 
Проверим, что функция <tex>h(x)</tex> вычислима за полиномиальное время от длины входа. Для вычисления значения функции <tex>h(x)</tex> сначала нужно вычислить <tex>f(x)</tex>. Время вычисления <tex>f(x)</tex> ограничено сверху некоторым полиномом <tex>p_1(|x|)</tex>, т.к. эта функция применяется в сведении по Карпу. Затем нужно вычислить <tex>g(f(x))</tex>. Пусть <tex>t = f(x)</tex>. Т.к. за единицу времени может быть написан лишь один символ, то <tex>|t| < p_1(|x|)</tex>. Время вычисления <tex>g(t)</tex> ограничено сверху некоторым полиномом <tex>p_2(|t|)</tex>. Т.о. время вычисления <tex>h(x)</tex> не больше <tex>p_2(p_1(|x|)) + p_1(|x|)</tex>.
 
Проверим, что функция <tex>h(x)</tex> вычислима за полиномиальное время от длины входа. Для вычисления значения функции <tex>h(x)</tex> сначала нужно вычислить <tex>f(x)</tex>. Время вычисления <tex>f(x)</tex> ограничено сверху некоторым полиномом <tex>p_1(|x|)</tex>, т.к. эта функция применяется в сведении по Карпу. Затем нужно вычислить <tex>g(f(x))</tex>. Пусть <tex>t = f(x)</tex>. Т.к. за единицу времени может быть написан лишь один символ, то <tex>|t| < p_1(|x|)</tex>. Время вычисления <tex>g(t)</tex> ограничено сверху некоторым полиномом <tex>p_2(|t|)</tex>. Т.о. время вычисления <tex>h(x)</tex> не больше <tex>p_2(p_1(|x|)) + p_1(|x|)</tex>.
 +
 +
----
 +
 +
См. также [[сведение по Куку]].

Версия 14:01, 19 марта 2010

Определение

Язык [math]A[/math] сводится по Карпу к языку [math]B[/math], если существует функция [math]f(x)[/math] такая, что [math]x \in A[/math] тогда и только тогда, когда [math]f(x) \in B[/math].

Обычно требуют, чтобы сводящая функция была вычислима за полиномиальное время от длины входа.

Заметим, что в таком случае класс языков [math]P[/math] замкнут относительно сведения по Карпу. Если язык [math]L[/math] не равен пустому языку и не равен [math]\Sigma ^*[/math], то существуют слова [math]x_1 \in L[/math] и [math]x_2 \not\in L[/math]. Сводящая функция [math]f(x)[/math] может решить сводимую задачу [math]M[/math] за полиномиальное время от длины входа и выдать [math]x_1[/math], если [math]x \in M[/math], или [math]x_2[/math], если [math]x \not\in M[/math]

Пример

Рассмотрим следующие языки: [math]IND[/math] и [math]CLIQUE[/math] — множества пар [math]\langle G, k \rangle [/math], где [math]G[/math] — граф, [math]k[/math] — натуральное число. Пара [math]\langle G, k \rangle [/math] принадлежит [math]IND[/math], если в графе [math]G[/math] есть подграф с [math]k[/math] вершинами, в котором все вершины не связаны ребрами. Пара [math]\langle G, k \rangle [/math] принадлежит [math]CLIQUE[/math], если в графе [math]G[/math] есть подграф с [math]k[/math] вершинами, в котором между каждой парой вершин проходит ребро.

Существует функция [math]f[/math] такая, что [math]f(\langle G, k \rangle ) = \langle H, k \rangle [/math], где [math]H[/math] — граф, в котором столько же вершин, сколько и в [math]G[/math], а ребра расставлены следующим образом: если в графе [math]G[/math] между вершинами [math]u[/math] и [math]v[/math] есть ребро, то в графе [math]H[/math] это ребро не проводится, если же в графе [math]G[/math] между этими вершинами его не было, то в [math]H[/math] оно есть между соответствующими вершинами. Эта функция вычисляется за линейное время от длины входа, если представлять граф в виде матрицы смежности.

Заметим, что если в графе [math]G[/math] был независимый подграф с [math]k[/math] вершинами, то в [math]H[/math] между всеми вершинами подграфа будут ребра, следовательно, в графе [math]H[/math] будет клика с [math]k[/math] вершинами.

С другой стороны, если в [math]H[/math] есть клика с [math]k[/math] вершинами, значит между всеми вершинами клики проведены ребра, а значит их не было в графе [math]G[/math]. Т.о. в графе [math]G[/math] был независимый подграф с [math]k[/math] вершинами.

Из всего сказанного следует, что [math]IND \le CLIQUE[/math].

Теорема о транзитивности

Операция сведения по Карпу транзитивна. Т.е. если [math]A \le B[/math], [math]B \le C[/math], то [math]A \le C[/math].

Доказательство транзитивности

Пусть [math]A \le B[/math]. Тогда существует функция [math]f[/math]: [math]x \in A \Leftrightarrow f(x) \in B[/math]. Пусть в свою очередь [math]B \le C[/math] и есть функция [math]g[/math]: [math]y \in B \Leftrightarrow g(y) \in C[/math].

Рассмотрим функция [math]h(x) = g(f(x))[/math]. [math]x \in A \Leftrightarrow f(x) \in B[/math]. Также [math]f(x) \in B \Leftrightarrow g(f(x)) \in C[/math]. Т.е. [math]x \in A \Leftrightarrow h(x) = g(f(x)) \in C [/math].

Проверим, что функция [math]h(x)[/math] вычислима за полиномиальное время от длины входа. Для вычисления значения функции [math]h(x)[/math] сначала нужно вычислить [math]f(x)[/math]. Время вычисления [math]f(x)[/math] ограничено сверху некоторым полиномом [math]p_1(|x|)[/math], т.к. эта функция применяется в сведении по Карпу. Затем нужно вычислить [math]g(f(x))[/math]. Пусть [math]t = f(x)[/math]. Т.к. за единицу времени может быть написан лишь один символ, то [math]|t| \lt p_1(|x|)[/math]. Время вычисления [math]g(t)[/math] ограничено сверху некоторым полиномом [math]p_2(|t|)[/math]. Т.о. время вычисления [math]h(x)[/math] не больше [math]p_2(p_1(|x|)) + p_1(|x|)[/math].


См. также сведение по Куку.