Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
==Основные определения==
+
=Основные определения=
 
{{Определение
 
{{Определение
 
|definition=Множество <tex>X^* \subseteq X</tex> называется Парето оптимальным, если:
 
|definition=Множество <tex>X^* \subseteq X</tex> называется Парето оптимальным, если:
Строка 17: Строка 17:
 
}}
 
}}
  
==Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта==
+
=Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта=
 
Рассмотрим функции вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(a)=B, f(A)=b</tex>. Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A]</tex> и <tex>[b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>.  
 
Рассмотрим функции вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(a)=B, f(A)=b</tex>. Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A]</tex> и <tex>[b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>.  
  
Строка 24: Строка 24:
 
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (<tex> \alpha _{OPT}</tex>) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема (<tex> \alpha _{HYP}</tex>) и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно <math> 1 + \Theta ( \frac{1}{n}) </math>.
 
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (<tex> \alpha _{OPT}</tex>) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема (<tex> \alpha _{HYP}</tex>) и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно <math> 1 + \Theta ( \frac{1}{n}) </math>.
  
=Индикатор гиперобъема=
+
==Индикатор гиперобъема==
 
{{Определение
 
{{Определение
 
|definition=Пусть дано множество решения <tex>\mathrm{X \in \mathbb{R}^d}</tex>. Пусть также множество всех решений усечено некоторой точкой <tex>\mathrm{r = \left(r_1, r_2, \ldots, r_d \right)}</tex>. Тогда:
 
|definition=Пусть дано множество решения <tex>\mathrm{X \in \mathbb{R}^d}</tex>. Пусть также множество всех решений усечено некоторой точкой <tex>\mathrm{r = \left(r_1, r_2, \ldots, r_d \right)}</tex>. Тогда:
Строка 37: Строка 37:
 
}}
 
}}
  
=Нахождение лучшего коэффициента аппроксимации=
+
==Нахождение лучшего коэффициента аппроксимации==
 
[[http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем| Доказательство]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.  
 
[[http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем| Доказательство]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.  
  
=Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем=
+
==Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем==
{{Утверждение 1.
+
{{Утверждение
 
|statement=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X= \left(x_1, x_2, \ldots, x_d \right) \in X </tex>.
 
|statement=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X= \left(x_1, x_2, \ldots, x_d \right) \in X </tex>.
 
Тогда [[http://neerc.ifmo.ru/wiki/index.php?title=Сложность_задачи_вычисления_Least_Hypervolume_Contributor_и_задачи_его_аппроксимации| MINCON]] данного множество решения:
 
Тогда [[http://neerc.ifmo.ru/wiki/index.php?title=Сложность_задачи_вычисления_Least_Hypervolume_Contributor_и_задачи_его_аппроксимации| MINCON]] данного множество решения:
Строка 47: Строка 47:
 
<tex>MINCON(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}</tex>
 
<tex>MINCON(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}</tex>
 
|proof=
 
|proof=
 +
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значенияями.
 +
Пусть <tex>a_i, b_i</tex> - длины сторон соответствующего прямоугольника, тогда:
 +
 +
<tex> a_i \geq MINCON(X)/b_i,    \forall 2 \leq i \leq n - 1</tex>
 +
 +
Это означает:
 +
 +
<tex> \sum\limits_{i=2}^{n-1} MINCON(x)/b_i \leq \sum\limits_{i=2}^{n-1} a_i \leq \sum\limits_{i=2}^{n} a_i = \sum\limits_{i=2}^{n} x_i - \sum\limits_{i=1}^{n-1} x_i = x_n - x_1 </tex>
 +
 +
и поэтому:
 +
<tex>MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}</tex>
 +
 +
Так как среднее гармоническое меньше чем среднее арифметическое:
 +
 +
<tex> \frac{n - 2}{\sum\limits_{i=2}^{n-1}1/b_i} \leq \frac{\sum\limits_{i=2}^{n-1}1/b_i}{n - 2}</tex>
 +
 +
Преобразуя, получаем искомое.
 
}}
 
}}
 +
 +
Далее необходимо посчитать коэффициент аппроксимации для внутренних и внешних точек
 +
 +
{{Утверждение
 +
|statement=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X= \left(x_1, x_2, \ldots, x_d \right) \in X </tex>.
 +
Тогда [[http://neerc.ifmo.ru/wiki/index.php?title=Сложность_задачи_вычисления_Least_Hypervolume_Contributor_и_задачи_его_аппроксимации| MINCON]] данного множество решения:
 +
 +
<tex>MINCON(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}</tex>
 +
|proof=
 +
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значенияями.
 +
Пусть <tex>a_i, b_i</tex> - длины сторон соответствующего прямоугольника, тогда:
 +
 +
<tex> a_i \geq MINCON(X)/b_i,    \forall 2 \leq i \leq n - 1</tex>
 +
 +
Это означает:
 +
 +
<tex> \sum\limits_{i=2}^{n-1} MINCON(x)/b_i \leq \sum\limits_{i=2}^{n-1} a_i \leq \sum\limits_{i=2}^{n} a_i = \sum\limits_{i=2}^{n} x_i - \sum\limits_{i=1}^{n-1} x_i = x_n - x_1 </tex>
 +
 +
и поэтому:
 +
<tex>MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}</tex>
 +
 +
Так как среднее гармоническое меньше чем среднее арифметическое:
 +
 +
<tex> \frac{n - 2}{\sum\limits_{i=2}^{n-1}1/b_i} \leq \frac{\sum\limits_{i=2}^{n-1}1/b_i}{n - 2}</tex>
 +
 +
Преобразуя, получаем искомое.
 +
}}
 +
  
 
В статье [1], п. 4 приведено доказательство того, что для данного вида функций всегда существует множество решение, максимизирующее значение индикатора гиперобъема, а также устанавливает значение коэффициент аппроксимации значением: <tex>1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.
 
В статье [1], п. 4 приведено доказательство того, что для данного вида функций всегда существует множество решение, максимизирующее значение индикатора гиперобъема, а также устанавливает значение коэффициент аппроксимации значением: <tex>1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.
Строка 57: Строка 102:
  
  
==Источники==
+
=Источники=
 
# [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/4/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation]
 
# [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/4/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation]

Версия 04:52, 19 июня 2012

Основные определения

Определение:
Множество [math]X^* \subseteq X[/math] называется Парето оптимальным, если:

[math]\mathrm{\forall x^* \subset X^* \not \exists x \subset X : x \succ x^*}[/math], где [math] x \succ x^* [/math]([math]x[/math] доминирует [math]x^*[/math])[math] \leftrightarrow \left( \forall i \in 1 \ldots d: f_i(x) \gt f_i(x^*) \right) \bigwedge \left( \exists i \in 1 \ldots d: f_i(x) \gt f_i(x^*)\right)[/math]

[math]P(X^*)[/math] - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время.


Определение:
Множество решений [math]\mathrm{X=(x_1,x_2, \ldots , x_n)}[/math] называется [math]\alpha[/math]-аппроксимацией функции [math]f \in \mathbb{F}[/math], если:

[math]\mathrm{\forall x \in [a,A] \exists x_i \in X : (x \leq \alpha x_i) \bigwedge (f(x) \leq \alpha f(x_i))}[/math]

Коэффицент аппроксимации функции [math]f[/math] на [math]X[/math] равен: [math]\mathrm{\alpha (f, X) = inf \{\alpha | X} - \alpha[/math] аппроксимация [math]f \}[/math]

Оптимальный коэффицент аппроксимации [math]\alpha_{opt} = \sup \limits_{f \in \mathbb{F}} \inf \limits_{x \in \mathbb{X}} \alpha (f, X)[/math]


Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта

Рассмотрим функции вида: [math]f:[a,A] \rightarrow [b,B][/math], где [math]f[/math] убывает и [math]f(a)=B, f(A)=b[/math]. Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков [math] [a,A][/math] и [math][b,B] [/math]. Так как для фиксированных констант [math] \mu , \nu [/math] функция [math] f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ][/math] и [math] f^*= \nu f(x/ \mu ) [/math] имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений [math]A/a[/math] и [math]B/b[/math].

Множество всех таких функций обозначим через [math]\mathbb{F}[/math]. Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество решение, максимизирующее индикатор гиперобъема.

Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n ([math] \alpha _{OPT}[/math]) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема ([math] \alpha _{HYP}[/math]) и докажем, что для количества точек [math] n [/math] они одинаковы, а именно [math] 1 + \Theta ( \frac{1}{n}) [/math].

Индикатор гиперобъема

Определение:
Пусть дано множество решения [math]\mathrm{X \in \mathbb{R}^d}[/math]. Пусть также множество всех решений усечено некоторой точкой [math]\mathrm{r = \left(r_1, r_2, \ldots, r_d \right)}[/math]. Тогда:

[math]\mathrm{HYP\left(X\right)=VOL\left( \bigcup\limits_{\left(x_1, x_2, \ldots, x_d \right) \in X} \left[ r_1, x_1\right] \times \left[ r_2, x_2\right] \times \cdots \times \left[ r_d, x_d\right] \right)}[/math], где через [math]VOL(X)[/math] обозначена мера множества [math]X[/math] по Лебегу.

Гиперобъем является единственным унарным индикатором эластичным по Парето(Pareto-compliant).
Утверждение:
Пусть [math]f \in \mathbb{F}, n \in \mathbb{N}[/math]. Тогда существует, не обязятельно единственное, множество решения [math]X \in \mathbb{X}[/math], которое максимизирует значение [math]HYP(X)[/math] на [math]\mathbb{X}[/math]
[math]\triangleright[/math]
См. [Гиперобъем]
[math]\triangleleft[/math]

Нахождение лучшего коэффициента аппроксимации

[Доказательство] ограничивает значение оптимального коэффицента апроксимации сверху: [math]1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}[/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math].

Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем

Утверждение:
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X= \left(x_1, x_2, \ldots, x_d \right) \in X [/math].

Тогда [MINCON] данного множество решения:

[math]MINCON(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}[/math]
[math]\triangleright[/math]

Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значенияями. Пусть [math]a_i, b_i[/math] - длины сторон соответствующего прямоугольника, тогда:

[math] a_i \geq MINCON(X)/b_i, \forall 2 \leq i \leq n - 1[/math]

Это означает:

[math] \sum\limits_{i=2}^{n-1} MINCON(x)/b_i \leq \sum\limits_{i=2}^{n-1} a_i \leq \sum\limits_{i=2}^{n} a_i = \sum\limits_{i=2}^{n} x_i - \sum\limits_{i=1}^{n-1} x_i = x_n - x_1 [/math]

и поэтому: [math]MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}[/math]

Так как среднее гармоническое меньше чем среднее арифметическое:

[math] \frac{n - 2}{\sum\limits_{i=2}^{n-1}1/b_i} \leq \frac{\sum\limits_{i=2}^{n-1}1/b_i}{n - 2}[/math]

Преобразуя, получаем искомое.
[math]\triangleleft[/math]

Далее необходимо посчитать коэффициент аппроксимации для внутренних и внешних точек

Утверждение:
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X= \left(x_1, x_2, \ldots, x_d \right) \in X [/math].

Тогда [MINCON] данного множество решения:

[math]MINCON(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}[/math]
[math]\triangleright[/math]

Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значенияями. Пусть [math]a_i, b_i[/math] - длины сторон соответствующего прямоугольника, тогда:

[math] a_i \geq MINCON(X)/b_i, \forall 2 \leq i \leq n - 1[/math]

Это означает:

[math] \sum\limits_{i=2}^{n-1} MINCON(x)/b_i \leq \sum\limits_{i=2}^{n-1} a_i \leq \sum\limits_{i=2}^{n} a_i = \sum\limits_{i=2}^{n} x_i - \sum\limits_{i=1}^{n-1} x_i = x_n - x_1 [/math]

и поэтому: [math]MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}[/math]

Так как среднее гармоническое меньше чем среднее арифметическое:

[math] \frac{n - 2}{\sum\limits_{i=2}^{n-1}1/b_i} \leq \frac{\sum\limits_{i=2}^{n-1}1/b_i}{n - 2}[/math]

Преобразуя, получаем искомое.
[math]\triangleleft[/math]


В статье [1], п. 4 приведено доказательство того, что для данного вида функций всегда существует множество решение, максимизирующее значение индикатора гиперобъема, а также устанавливает значение коэффициент аппроксимации значением: [math]1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}[/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math].

Примечание

Конечно, зависимость от [math] [a,A][/math] и [math][b,B] [/math] в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже Вы можете увидеть пример поведения данных значений для определенного класса функций.

Untitled.jpg


Источники

  1. Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation