Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем)
м (rollbackEdits.php mass rollback)
 
(не показано 75 промежуточных версий 3 участников)
Строка 1: Строка 1:
=Основные определения=
+
Существует класс эволюционных алгоритмов, основывающихся на [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем|индикаторах]] для решения задачи [[Задача многокритериальной оптимизации. Multiobjectivization|многокритериальной оптимизации]].
 +
В данной статье приводится доказательство правомерности использования индикатора [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Гиперобъем|гиперобъема]] в качестве максимизируемого значения из работы <ref>[http://www.mpi-inf.mpg.de/homepage/tfried/paper/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation]</ref>.
 +
 
 +
==Основные определения==
 
{{Определение
 
{{Определение
|definition=Множество <tex>X^* \subseteq X</tex> называется Парето оптимальным, если:
+
|id=definition1
<tex>\mathrm{\forall x^* \subset X^* \not \exists x \subset X : x \succ x^*}</tex>,
+
|about=1
где <tex> x \succ x^* </tex>(<tex>x</tex> доминирует <tex>x^*</tex>)<tex> \leftrightarrow \left( \forall i \in 1 \ldots d: f_i(x) \geq f_i(x^*) \right) \bigwedge \left( \exists i \in 1 \ldots d: f_i(x) > f_i(x^*)\right)</tex>  
+
|definition=Множество функций вида: <tex>f:[a, A] \rightarrow [b, B]</tex>, где <tex>f</tex> убывает и <tex>f(a) = B, f(A) = b</tex> обозначим через <tex>\mathbb{F}</tex>.
 
+
}}
<math>P(X^*)</math> - множество оптимальных по Парето решений, его также называют Парето-фронтом. Парето-фронт не может быть вычислен за полиномиальное время.
+
[[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Коэффициент апроксимации|Коэффициент апроксимации]] монотонно убывающих функций не зависит от масштабов отрезков <tex> [a, A]</tex> и <tex>[b, B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a ,  \mu A ] \rightarrow [ \nu b , \nu B ]</tex>  и  <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>.
 +
{{Определение
 +
|id=definition2
 +
|about=2
 +
|definition=
 +
Фиксируем <tex>n</tex>. Для фиксированного отрезка <tex> [a, A]</tex> будем называть кортеж <tex> X = (x_1, \ldots, x_n)</tex>, такой что <tex>a \leq x_1 \leq \ldots \leq x_n \leq A</tex> — множеством-решением. Множество таких решений будем обозначать <tex>\mathbb{X}</tex>.
 
}}
 
}}
 
{{Определение
 
{{Определение
|definition=Множество решений <tex>\mathrm{X=\{x_1,x_2, \ldots , x_n\}}</tex> называется <tex>\alpha</tex>-аппроксимацией функции <tex>f \in \mathbb{F}</tex>, если:
+
|id=definition3
<tex>\mathrm{\forall x \in [a,A] \exists x_i \in X : (x \leq \alpha x_i) \bigwedge (f(x) \leq \alpha f(x_i))}</tex>
+
|about=3
 +
|definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = (x_1, \ldots, x_n) \in \mathbb{X}</tex>. Тогда вкладом <tex>i</tex>-й точки в гиперобъем решения называется
  
Коэффицент аппроксимации функции <tex>f</tex> на <tex>X</tex> равен:
+
<tex>Con(i, X) = (x_i-x_{i - 1})(f(x_i) - f(x_{i + 1}))</tex>.
<tex>\mathrm{\alpha (f, X) = inf \{\alpha | X} - \alpha</tex> аппроксимация <tex>f \}</tex>
 
  
Оптимальный коэффицент аппроксимации <tex>\alpha_{opt} = \sup \limits_{f \in \mathbb{F}} \inf \limits_{x \in \mathbb{X}} \alpha (f, X)</tex>
+
Минимальным вкладом в гиперобъем множества-решения называется
 +
 
 +
<tex>MinCon(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i + 1}))</tex>.
 
}}
 
}}
  
=Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта=
+
Далее будем рассматривать только монотонно убывающие, [http://en.wikipedia.org/wiki/Semi-continuity полунепрерывные] [[Задача многокритериальной оптимизации. Multiobjectivization#Множество Парето оптимальных значений|Парето-фронты]]. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество-решение, максимизирующее индикатор гиперобъема]].
Рассмотрим функции вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(a)=B, f(A)=b</tex>. Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A]</tex> и <tex>[b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>.  
 
  
Множество всех таких функций обозначим через <tex>\mathbb{F}</tex>. Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, [http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем| чтобы существовало множество решение, максимизирующее индикатор гиперобъема].
+
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из <tex>n</tex> точек <tex> \alpha _{OPT}</tex> и верхнюю границу коэффициента аппроксимации для множества из <tex>n</tex> точек, максимизирующего значение индикатора гиперобъема <tex> \alpha _{HYP}</tex>, и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно равны
 
+
<math> 1 + \Theta ( \frac{1}{n}) </math>.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (<tex> \alpha _{OPT}</tex>) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема (<tex> \alpha _{HYP}</tex>) и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно <math> 1 + \Theta ( \frac{1}{n}) </math>.
 
  
 
==Индикатор гиперобъема==
 
==Индикатор гиперобъема==
{{Определение
 
|definition=Пусть дано множество решения <tex>\mathrm{X \in \mathbb{R}^d}</tex>. Пусть также множество всех решений усечено некоторой точкой <tex>\mathrm{r = \left(r_1, r_2, \ldots, r_d \right)}</tex>. Тогда:
 
<tex>\mathrm{HYP\left(X\right)=VOL\left( \bigcup\limits_{\left(x_1, x_2, \ldots, x_d \right) \in X} \left[ r_1, x_1\right] \times \left[ r_2, x_2\right] \times \cdots  \times \left[ r_d, x_d\right] \right)}</tex>, где через <tex>VOL(X)</tex> обозначена мера множества <tex>X</tex> [[Мера_Лебега_в_R%5En|по Лебегу]].
 
Гиперобъем является единственным унарным индикатором эластичным по Парето(Pareto-compliant).
 
}}
 
 
{{Утверждение
 
{{Утверждение
 +
|id=statement1
 +
|about=1
 
|statement=Пусть <tex>f \in \mathbb{F}, n \in \mathbb{N}</tex>.
 
|statement=Пусть <tex>f \in \mathbb{F}, n \in \mathbb{N}</tex>.
Тогда существует, не обязятельно единственное, множество решения <tex>X \in \mathbb{X}</tex>, которое максимизирует значение <tex>HYP(X)</tex> на <tex>\mathbb{X}</tex>
+
Тогда существует, не обязятельно единственное, множество-решение <tex>X \in \mathbb{X}</tex>, которое максимизирует значение [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Индикатор Гиперобъема|гиперобъема]] <tex>HYP(X)</tex> на <tex>\mathbb{X}</tex>
|proof=
 
См. [[http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем|статью Гиперобъем]]
 
 
}}
 
}}
 +
Доказательство представлено в статье [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Индикатор Гиперобъема|Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем]]
  
 
==Нахождение лучшего коэффициента аппроксимации==
 
==Нахождение лучшего коэффициента аппроксимации==
[[http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем| Доказательство]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.  
+
В статье [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Аппроксимация функции и ее свойства|Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем]] представленно доказательство верхней границы оптимального коэффицента апроксимации: <tex>1 + \frac{ \log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.
  
==Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем==
+
==Нахождение коэффициента аппроксимации множества-решения максимизируюшего гиперобъем==
 
{{Утверждение
 
{{Утверждение
|statement=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X= \{x_1, x_2, \ldots, x_d \} \in X </tex>.
+
|about=2
Тогда [[http://neerc.ifmo.ru/wiki/index.php?title=Сложность_задачи_вычисления_Least_Hypervolume_Contributor_и_задачи_его_аппроксимации| MINCON]] данного множество решения:
+
|id=statement2
 +
|statement=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X= (x_1, x_2, \ldots, x_n ) \in X </tex>.
 +
Тогда минимальный вклад данного множества-решения:
  
<tex>MINCON(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}</tex>
+
<tex>MinCon(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}</tex>
 
|proof=
 
|proof=
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между соседними точками множества решения и их значениями.
+
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между точками множества-решения и их значениями. Примеры образующихся прямоугольников заштрихованы на рисунке ниже
Пусть <tex>a_i, b_i</tex> - длины сторон соответствующего прямоугольника, тогда:
 
  
<tex> a_i \geq MINCON(X)/b_i</tex>, для любого <tex>2 \leq i \leq n - 1</tex>
+
[[Файл:Untitled2.jpg]]
 +
 
 +
Пусть <tex>a_i, b_i </tex> — длины сторон соответствующего прямоугольника, тогда:
 +
 
 +
<tex> a_i \geq MinCon(X)/b_i</tex> для всех <tex>i \in [2, n - 1]</tex>
  
 
Это означает:
 
Это означает:
  
<tex> \sum\limits_{i=2}^{n-1} MINCON(x)/b_i \leq \sum\limits_{i=2}^{n-1} a_i \leq \sum\limits_{i=2}^{n} a_i = \sum\limits_{i=2}^{n} x_i - \sum\limits_{i=1}^{n-1} x_i = x_n - x_1 </tex>
+
<tex> \sum\limits_{i = 2}^{n - 1} MinCon(x)/b_i \leq \sum\limits_{i = 2}^{n - 1} a_i \leq \sum\limits_{i = 2}^{n} a_i = \sum\limits_{i = 2}^{n} x_i - \sum\limits_{i = 1}^{n - 1} x_i = x_n - x_1 </tex>
  
 
и поэтому:
 
и поэтому:
<tex>MINCON(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i=2}^{n-1}1/b_i}</tex>
+
<tex>MinCon(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i = 2}^{n - 1}1/b_i}</tex>
  
 
Так как среднее гармоническое не больше среднего арифметического:
 
Так как среднее гармоническое не больше среднего арифметического:
  
<tex> \frac{n - 2}{\sum\limits_{i=2}^{n-1}1/b_i} \leq \frac{\sum\limits_{i=2}^{n-1}1/b_i}{n - 2}</tex>  
+
<tex>MinCon(X) \leq \frac{x_n - x_1}{\sum \limits_{i = 2}^{n - 1}1/b_i} \leq \frac{(x_n - x_1)\sum \limits_{i = 2}^{n - 1}b_i}{(n - 2)^2} \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}</tex>
 
 
Преобразуя, получаем искомое.
 
 
}}
 
}}
  
Далее необходимо посчитать коэффициент аппроксимации для "внутренних" (<tex>x \in [x_1, x_n]</tex>) и "внешних" точек (<tex>x < x_1</tex> или <tex>x > x_n</tex>).  
+
Далее необходимо посчитать коэффициент аппроксимации для «внутренних» (<tex>x \in [x_1, x_n]</tex>) и «внешних» точек (<tex>x < x_1</tex> или <tex>x > x_n</tex>).  
  
 
{{Теорема
 
{{Теорема
|id=1
+
|about=1
|statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество решение <tex>\{x_1, x_2, \ldots, x_d\} \in X_{HYP}^f </tex> достигает <tex>1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> мультипликативной аппроксимации всех внутренних точек.
+
|id=theorem1
 +
|statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. Любое множество-решение <tex>(x_1, x_2, \ldots, x_d) \in \mathbb{X}</tex> достигает <tex>\alpha = 1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}</tex> аппроксимации всех внутренних точек.
 
|proof=
 
|proof=
Доказательство производится от противного, принимая предположение, что существует такой <tex> x</tex>, для которого бы не выполнялось условие аппроксимации при данном коэффициенте.
+
Допустим, что существует <tex>x</tex>, который не аппроксимируется <tex>\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}</tex>.
 +
Пусть <tex>x_i < x < x_i + 1</tex>, тогда <tex>x > \alpha x_i, f(x) > \alpha f(x_{i + 1})</tex>.
 +
 
 +
Известно, что <tex>MinCon(X) \geq (x - x_i)(f(x) - f(x_{i + 1}))</tex>.
 +
 
 +
После подстановки получим <tex>MinCon(X) > (\alpha - 1)^2 x_i f(x_{i + 1})</tex> (1).
 +
 
 +
Применив [[#statement2|утверждение (2)]], получим:
 +
 
 +
<tex>MinCon(X) \leq (x_i - x_1)(f(x_1) - f(x_i))/(i - 2)^2 \leq x_iB/(i - 2)^2</tex>  для всех <tex>i \in [3, n - 1]</tex>  (2)
 +
 
 +
<tex>MinCon(X) \leq (x_n - x_{i + 1})(f(x_{i + 1}) - f(x_n))/(n - i - 2)^2 \leq A f(x_{i + 1})/(n - i - 2)^2</tex>  для всех <tex>i \in [1, n - 3]</tex>  (3)
 +
 
 +
Таким образом, <tex>(\alpha - 1)^2 x_i f(x_{i + 1}) < \min \{\frac{x_iB}{(i - 2)^2} ,\frac{A f(x_{i + 1})}{(n - i - 2)^2}\} \Leftrightarrow</tex> <tex>\alpha < 1 + \min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}</tex>.
 +
 
 +
Т.к. <tex>\frac{\sqrt{x_iB}}{i - 2}</tex> монотонно убывает, а <tex>\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}</tex> монотонно возрастает, то максимальное значение <tex>\min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}</tex> достигается при равенстве обоих членов:
 +
 
 +
<tex>\frac{\sqrt{x_iB}}{i - 2} = \frac{\sqrt{A f(x_{i + 1})}}{n - i - 2} \Leftrightarrow i = 2 + \frac{(n - 4)\sqrt{B/b}}{\sqrt{A/a} + \sqrt{B/b}}</tex>.
 +
 
 +
Получим верхнюю оценку для <tex>\alpha</tex>: <tex>\alpha < 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}</tex>.
 +
 
 +
Вышесказанное верно для <tex>3 \leq i \leq n - 3</tex>.
 +
 
 +
Для <tex>i = 1, 2</tex> из (1) и (3) следует, что <tex>\alpha < 1 + \frac{\sqrt{A/a}}{n - i - 2} \leq 1 + \frac{\sqrt{A/a}}{n - 4}</tex>, что невозможно по условию теоремы.
 +
 
 +
Для <tex>i = n - 2, n - 1</tex> по (1) и (2) <tex>\alpha < 1 + \frac{ \sqrt{B/b} } {i - 2}  \leq 1 + \frac {\sqrt {B/b} } {n - 4}</tex>, что тоже невозможно по условию теоремы.
 
}}
 
}}
  
 
{{Теорема
 
{{Теорема
|id=2
+
|about=2
|statement=Пусть <tex>f \in \mathbb{F}, n > 3</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Каждое множество решение <tex>\{x_1, x_2, \ldots, x_d\} \in X_{HYP}^f </tex> достигает <tex>1 + \frac{A}{(a - R_x)(n - 2)^2}</tex> мультипликативной аппроксимации всех точек с <tex>x < x_1</tex>, и достигает <tex>1 + \frac{B}{(b - R_y)(n - 2)^2}</tex> мультипликативной аппроксимации всех точек с <tex>x > x_n</tex>.
+
|id=theorem2
 +
|statement=Пусть <tex>f \in \mathbb{F}, n > 3</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Каждое множество-решение <tex>(x_1, x_2, \ldots, x_n) \in \mathbb{X} </tex> достигает <tex>1 + \frac{A}{(a - R_x)(n - 2)^2}</tex> аппроксимации всех точек с <tex>x < x_1</tex> и <tex>1 + \frac{B}{(b - R_y)(n - 2)^2}</tex> аппроксимации всех точек с <tex>x > x_n</tex>.
 
|proof=
 
|proof=
Доказательство производится c использованием ранее доказанного утверждения о MINCON.
+
Доказательство производится c использованием [[#statement2|ранее доказанного утверждения]] о <tex>MinCon</tex>.
 
}}
 
}}
  
  
Совместно теоремы 1 и 2 приводят к следующим следствиям:
+
Из [[#theorem1|теоремы (1)]] и [[#theorem2|теоремы (2)]] выводятся следующие следствия:
  
'''Следствие:''' <tex>\alpha_{opt} = 1 + \Theta(1/n)</tex>
+
{{Утверждение
 +
|about=Следствие 1
 +
|statement=
  
 
Пусть <tex>f \in \mathbb{F}, n > 4</tex>, и <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Тогда:
 
Пусть <tex>f \in \mathbb{F}, n > 4</tex>, и <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Тогда:
  
<tex> \lambda_{HYP} \leq 1 + \max{ \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}}{\frac{A}{(a - R_x)(n - 2)^2}}{\frac{B}{(b - R_y)(n - 2)^2}}</tex>
+
<tex> \alpha_{HYP} \leq 1 + \max \{ \frac{ \sqrt{A/a} + \sqrt{B/b}}{n - 4}, \frac{A}{(a - R_x)(n - 2)^2}, \frac{B}{(b - R_y)(n - 2)^2}\}</tex>
 
+
}}
 
+
{{Утверждение
'''Следствие:''' <tex>\alpha_{opt} = 1 + \Theta(1/n)</tex>
+
|about=Следствие 2
 
+
|statement=Пусть <tex>f \in \mathbb{F}, n > 4</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Тогда если  
Пусть <tex>f \in \mathbb{F}, n > 4</tex>. И <tex> R = (R_x, R_y) \leq (0, 0) </tex> является точкой отсчета. Тогда если  
 
  
<tex> n \geq 2 + \max{\sqrt{A/a}}{\sqrt{B/b}}</tex>
+
<tex> n \geq 2 + \max \{\sqrt{A/a}, \sqrt{B/b}\}</tex>
  
 
или
 
или
Строка 107: Строка 142:
 
то есть
 
то есть
  
<tex> \alpha _{HYP} </tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>,
+
<tex> \alpha _{HYP} </tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>
 
+
}}
 
что и требовалось доказать.
 
что и требовалось доказать.
  
 
=Примечание=
 
=Примечание=
Конечно, зависимость от <tex> [a,A]</tex> и <tex>[b,B] </tex> в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже Вы можете увидеть пример поведения данных значений для определенного класса функций.
+
Конечно, зависимость от <tex> [a, A]</tex> и <tex>[b, B] </tex> в аппроксимационном коэффициенте оптимального множества решения меньше, чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для класса функций <tex>f \in \mathbb{F}</tex>, <tex> f:[1, 100] \rightarrow [1, 100]</tex>.
  
 
[[Файл:Untitled.jpg]]
 
[[Файл:Untitled.jpg]]
 
  
 
=Источники=
 
=Источники=
# [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/4/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation]
+
<references/>

Текущая версия на 19:15, 4 сентября 2022

Существует класс эволюционных алгоритмов, основывающихся на индикаторах для решения задачи многокритериальной оптимизации. В данной статье приводится доказательство правомерности использования индикатора гиперобъема в качестве максимизируемого значения из работы [1].

Основные определения

Определение:
Множество функций вида: [math]f:[a, A] \rightarrow [b, B][/math], где [math]f[/math] убывает и [math]f(a) = B, f(A) = b[/math] обозначим через [math]\mathbb{F}[/math].

Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков [math] [a, A][/math] и [math][b, B] [/math]. Так как для фиксированных констант [math] \mu , \nu [/math] функция [math] f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ][/math] и [math] f^*= \nu f(x/ \mu ) [/math] имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений [math]A/a[/math] и [math]B/b[/math].

Определение:
Фиксируем [math]n[/math]. Для фиксированного отрезка [math] [a, A][/math] будем называть кортеж [math] X = (x_1, \ldots, x_n)[/math], такой что [math]a \leq x_1 \leq \ldots \leq x_n \leq A[/math] — множеством-решением. Множество таких решений будем обозначать [math]\mathbb{X}[/math].


Определение:
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X = (x_1, \ldots, x_n) \in \mathbb{X}[/math]. Тогда вкладом [math]i[/math]-й точки в гиперобъем решения называется

[math]Con(i, X) = (x_i-x_{i - 1})(f(x_i) - f(x_{i + 1}))[/math].

Минимальным вкладом в гиперобъем множества-решения называется

[math]MinCon(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i + 1}))[/math].


Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество-решение, максимизирующее индикатор гиперобъема.

Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из [math]n[/math] точек [math] \alpha _{OPT}[/math] и верхнюю границу коэффициента аппроксимации для множества из [math]n[/math] точек, максимизирующего значение индикатора гиперобъема [math] \alpha _{HYP}[/math], и докажем, что для количества точек [math] n [/math] они одинаковы, а именно равны [math] 1 + \Theta ( \frac{1}{n}) [/math].

Индикатор гиперобъема

Утверждение (1):
Пусть [math]f \in \mathbb{F}, n \in \mathbb{N}[/math]. Тогда существует, не обязятельно единственное, множество-решение [math]X \in \mathbb{X}[/math], которое максимизирует значение гиперобъема [math]HYP(X)[/math] на [math]\mathbb{X}[/math]

Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем

Нахождение лучшего коэффициента аппроксимации

В статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем представленно доказательство верхней границы оптимального коэффицента апроксимации: [math]1 + \frac{ \log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}[/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math].

Нахождение коэффициента аппроксимации множества-решения максимизируюшего гиперобъем

Утверждение (2):
Пусть [math]f \in \mathbb{F}, n \geq 3[/math] и [math]X= (x_1, x_2, \ldots, x_n ) \in X [/math].

Тогда минимальный вклад данного множества-решения:

[math]MinCon(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}[/math]
[math]\triangleright[/math]

Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между точками множества-решения и их значениями. Примеры образующихся прямоугольников заштрихованы на рисунке ниже

Untitled2.jpg

Пусть [math]a_i, b_i [/math] — длины сторон соответствующего прямоугольника, тогда:

[math] a_i \geq MinCon(X)/b_i[/math] для всех [math]i \in [2, n - 1][/math]

Это означает:

[math] \sum\limits_{i = 2}^{n - 1} MinCon(x)/b_i \leq \sum\limits_{i = 2}^{n - 1} a_i \leq \sum\limits_{i = 2}^{n} a_i = \sum\limits_{i = 2}^{n} x_i - \sum\limits_{i = 1}^{n - 1} x_i = x_n - x_1 [/math]

и поэтому: [math]MinCon(X) \leq \frac{(x_n - x_1)}{\sum\limits_{i = 2}^{n - 1}1/b_i}[/math]

Так как среднее гармоническое не больше среднего арифметического:

[math]MinCon(X) \leq \frac{x_n - x_1}{\sum \limits_{i = 2}^{n - 1}1/b_i} \leq \frac{(x_n - x_1)\sum \limits_{i = 2}^{n - 1}b_i}{(n - 2)^2} \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n - 2)^2}[/math]
[math]\triangleleft[/math]

Далее необходимо посчитать коэффициент аппроксимации для «внутренних» ([math]x \in [x_1, x_n][/math]) и «внешних» точек ([math]x \lt x_1[/math] или [math]x \gt x_n[/math]).

Теорема (1):
Пусть [math]f \in \mathbb{F}, n \gt 4[/math]. Любое множество-решение [math](x_1, x_2, \ldots, x_d) \in \mathbb{X}[/math] достигает [math]\alpha = 1 + \frac{ \sqrt{A/a} + \sqrt{B/b} }{n - 4}[/math] аппроксимации всех внутренних точек.
Доказательство:
[math]\triangleright[/math]

Допустим, что существует [math]x[/math], который не аппроксимируется [math]\alpha = 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}[/math]. Пусть [math]x_i \lt x \lt x_i + 1[/math], тогда [math]x \gt \alpha x_i, f(x) \gt \alpha f(x_{i + 1})[/math].

Известно, что [math]MinCon(X) \geq (x - x_i)(f(x) - f(x_{i + 1}))[/math].

После подстановки получим [math]MinCon(X) \gt (\alpha - 1)^2 x_i f(x_{i + 1})[/math] (1).

Применив утверждение (2), получим:

[math]MinCon(X) \leq (x_i - x_1)(f(x_1) - f(x_i))/(i - 2)^2 \leq x_iB/(i - 2)^2[/math] для всех [math]i \in [3, n - 1][/math] (2)

[math]MinCon(X) \leq (x_n - x_{i + 1})(f(x_{i + 1}) - f(x_n))/(n - i - 2)^2 \leq A f(x_{i + 1})/(n - i - 2)^2[/math] для всех [math]i \in [1, n - 3][/math] (3)

Таким образом, [math](\alpha - 1)^2 x_i f(x_{i + 1}) \lt \min \{\frac{x_iB}{(i - 2)^2} ,\frac{A f(x_{i + 1})}{(n - i - 2)^2}\} \Leftrightarrow[/math] [math]\alpha \lt 1 + \min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}[/math].

Т.к. [math]\frac{\sqrt{x_iB}}{i - 2}[/math] монотонно убывает, а [math]\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}[/math] монотонно возрастает, то максимальное значение [math]\min \{\frac{\sqrt{x_iB}}{i - 2} ,\frac{\sqrt{A f(x_{i + 1})}}{n - i - 2}\}[/math] достигается при равенстве обоих членов:

[math]\frac{\sqrt{x_iB}}{i - 2} = \frac{\sqrt{A f(x_{i + 1})}}{n - i - 2} \Leftrightarrow i = 2 + \frac{(n - 4)\sqrt{B/b}}{\sqrt{A/a} + \sqrt{B/b}}[/math].

Получим верхнюю оценку для [math]\alpha[/math]: [math]\alpha \lt 1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n - 4}[/math].

Вышесказанное верно для [math]3 \leq i \leq n - 3[/math].

Для [math]i = 1, 2[/math] из (1) и (3) следует, что [math]\alpha \lt 1 + \frac{\sqrt{A/a}}{n - i - 2} \leq 1 + \frac{\sqrt{A/a}}{n - 4}[/math], что невозможно по условию теоремы.

Для [math]i = n - 2, n - 1[/math] по (1) и (2) [math]\alpha \lt 1 + \frac{ \sqrt{B/b} } {i - 2} \leq 1 + \frac {\sqrt {B/b} } {n - 4}[/math], что тоже невозможно по условию теоремы.
[math]\triangleleft[/math]
Теорема (2):
Пусть [math]f \in \mathbb{F}, n \gt 3[/math]. И [math] R = (R_x, R_y) \leq (0, 0) [/math] является точкой отсчета. Каждое множество-решение [math](x_1, x_2, \ldots, x_n) \in \mathbb{X} [/math] достигает [math]1 + \frac{A}{(a - R_x)(n - 2)^2}[/math] аппроксимации всех точек с [math]x \lt x_1[/math] и [math]1 + \frac{B}{(b - R_y)(n - 2)^2}[/math] аппроксимации всех точек с [math]x \gt x_n[/math].
Доказательство:
[math]\triangleright[/math]
Доказательство производится c использованием ранее доказанного утверждения о [math]MinCon[/math].
[math]\triangleleft[/math]


Из теоремы (1) и теоремы (2) выводятся следующие следствия:

Утверждение (Следствие 1):
Пусть [math]f \in \mathbb{F}, n \gt 4[/math], и [math] R = (R_x, R_y) \leq (0, 0) [/math] является точкой отсчета. Тогда: [math] \alpha_{HYP} \leq 1 + \max \{ \frac{ \sqrt{A/a} + \sqrt{B/b}}{n - 4}, \frac{A}{(a - R_x)(n - 2)^2}, \frac{B}{(b - R_y)(n - 2)^2}\}[/math]
Утверждение (Следствие 2):
Пусть [math]f \in \mathbb{F}, n \gt 4[/math]. И [math] R = (R_x, R_y) \leq (0, 0) [/math] является точкой отсчета. Тогда если

[math] n \geq 2 + \max \{\sqrt{A/a}, \sqrt{B/b}\}[/math]

или

[math]R_x \leq - \sqrt{Aa}/n, R_y \leq - \sqrt{Bb}/n[/math], выполняется следующее неравенство

[math] \alpha _{HYP} \leq 1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}[/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math],

то есть

[math] \alpha _{HYP} [/math] = [math] 1 + \Theta ( \frac{1}{n}) [/math]

что и требовалось доказать.

Примечание

Конечно, зависимость от [math] [a, A][/math] и [math][b, B] [/math] в аппроксимационном коэффициенте оптимального множества решения меньше, чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для класса функций [math]f \in \mathbb{F}[/math], [math] f:[1, 100] \rightarrow [1, 100][/math].

Untitled.jpg

Источники