Изменения

Перейти к: навигация, поиск

Сетевая безопасность

20 262 байта добавлено, 19:22, 13 февраля 2017
Межсетевой экран
[[Файл:The_Language_Of_Cryptography.png]]
 
В данном случае нам нужны такие ключи <tex>K_{A}</tex> и <tex>K_{B}</tex>, что <tex>m = K_{B}(K_{A}(m))</tex>, где <tex>m</tex> - исходное сообщение, а <tex>K_{A}(m)</tex> - зашифрованное сообщение. Самое простое решение - использовать в качестве ключа некоторую другую перестановку алфавита, то есть словарь соответствия каждой букве какой-то другой. Минус такого подхода заключается в том, что очень быстро простым перебором можно подобрать ключ. Что же можно сделать? Разберемся, на чем основана криптография. Идея заключается в том, что алгоритм шифрования известен всем, а вот ключи являются секретными. Существует 2 основных типа криптографии: по симметричному ключу и по публичному ключу.
 
===Шифрование по симметричному ключу===
Оба собеседника используют один и тот же симметричный ключ. По факту у обоих есть ключ <tex>K_{AB}</tex> такой, что <tex>m = K_{AB}(K_{AB}(m))</tex>, где <tex>m</tex> - передаваемое сообщение, а <tex>K_{AB}(m)</tex> - зашифрованное сообщение.
 
[[Файл:Symmetric_Key_Cryptography.png]]
 
Есть 2 типа симметричного ключа:
# Потоковый шифр - симметричный шифр, в котором каждый символ сообщения преобразуется в символ зашифрованного текста в зависимости от используемого ключа и его расположения в сообщении. Одним из самых популярных шифров данного типа является RC4. Он широко используется в алгоритмах обеспечения безопасности беспроводных сетей WEP и WPA, а также может использоваться в протоколах SSL и TLS. Этот шифр строится на основе генератора псевдослучайных битов. На вход генератора записывается ключ, а на выходе читаются псевдослучайные биты. Длина ключа может составлять от 40 до 2048 бит. Генерируемые биты при этом имеют равномерное распределение. Основными преимуществами RC4 являются высокая скорость работы и переменный размер ключа. При этом он довольно уязвим, если используются не случайные или связанные ключи или один ключевой поток используется дважды.
# Блочный шифр - симметричный шифр, оперирующий группами бит фиксированной длины - блоками, характерный размер которых меняется в пределах 64-256 бит. Если исходный текст (или его остаток) меньше размера блока, перед шифрованием его дополняют. Фактически, блочный шифр представляет собой подстановку на алфавите блоков, которая, как следствие, может быть моно- или полиалфавитной. Главным достоинством блочных шифров является сходство алгоритмов шифрования и расшифрования, которые почти всегда отличаются лишь порядком действий. Блочный шифр сам по себе состоит из двух алгоритмов: шифрования и расшифрования. Оба алгоритма можно представить в виде функций. Функция шифрования <tex>E</tex> (англ. ''encryption'' - шифрование) на вход получает блок данных <tex>M</tex> (англ. ''message'' - сообщение) размером <tex>n</tex> бит и ключ <tex>K</tex> (англ. ''key'' - ключ) размером <tex>k</tex> бит и на выходе отдает блок шифротекста <tex>C</tex> (англ. ''cipher'' - шифр) размером <tex>n</tex> бит: <tex>E_{K}(M) := E(K, M) : \{0, 1\}^{k} \times \{0, 1\}^{n} \rightarrow \{0, 1\}^{n}</tex>. Для любого ключа <tex>K</tex>, <tex>E_{K}</tex> является биекцией на множестве <tex>n</tex>-битных блоков. Функция расшифрования <tex>D</tex> (англ. ''decryption'' - расшифрование) на вход получает шифр <tex>C</tex>, ключ <tex>K</tex> и на выходе отдает <tex>M</tex>: <tex>D_{K}(C) := D(K, C) : \{0, 1\}^{k} \times \{0, 1\}^{n} \rightarrow \{0, 1\}^{n}</tex>, являясь, при этом, обратной к функции шифрования: <tex>D = E^{-1}</tex>, <tex>\forall K : D_{K}(E_{K}(M)) = M</tex> и <tex>E_{K}(D_{K}(C)) = C</tex>. Можно заметить, что ключ, необходимый для шифрования и дешифрования, один и тот же - следствие симметричности блочности шифра.
 
===Шифрование по публичному ключу===
Данный подход принципиально отличается от шифрования по симметричному ключу. Во-первых, у отправителя и получателя есть своя пара публичного и секретного ключа, при этом секретными ключами они не делятся даже друг с другом. Во-вторых, публичный ключ шифрования известен всем. И, наконец, приватный ключ дешифрования известен только получателю. Вот как это выглядит:
 
[[Файл:Public_Key_Cryptography.png]]
 
Можно сделать вывод, что должно выполняться 2 требования: <tex>K_{B}^{-}</tex> и <tex>K_{B}^{+}</tex> такие, что <tex>K_{B}^{-}(K_{B}^{+}(m)) = m</tex>, и, зная публичный ключ, человек не должен иметь возможности посчитать приватный. Одним из самых известных алгоритмов является RSA (Rivest-Shamir-Adleman). Это криптографический алгоритм с открытым ключом, который основывается на вычислительной сложности задачи факторизации больших целых чисел. В криптографической системе RSA каждый ключ состоит из пары целых чисел. Каждый участник создает свой открытый и закрытый ключ самостоятельно, при этом эти ключи являются согласованной парой в том смысле, что они являются взаимно обратными, то есть:
 
<tex>\forall</tex> допустимых пар открытого и закрытого ключей <tex>(p, s)</tex>
 
<tex>\exists</tex> соответствующие функции шифрования <tex>E_{p}(x)</tex> и расшифрования <tex>D_{s}(x)</tex> такие, что
 
<tex>\forall</tex> сообщений <tex>m \in M</tex>, где <tex>M</tex> - множество допустимых сообщений,
 
<tex>m = D_{s}(E_{p}(m)) = E_{p}(D_{s}(m))</tex>.
 
RSA-ключи генерируются следующим образом:
# Выбираются два различных простых числа <tex>p</tex> и <tex>q</tex> заданного размера (например, 1024 бита каждое).
# Вычисляется их произведение <tex>n = p \cdot q</tex>, которое называется модулем.
# Вычисляется значение функции Эйлера от числа <tex>n</tex>: <tex>\phi (n) = (p - 1) \cdot (q - 1)</tex>.
# Выбирается целое число <tex>e</tex> <tex>(1 < e < \phi (n))</tex>, взаимно простое со значением функции <tex>\phi (n)</tex>. Обычно в качестве <tex>e</tex> берут простые числа, содержащие небольшое количество единичных бит в двоичной записи, например, простые числа Ферма <tex>17</tex>, <tex>257</tex> или <tex>65537</tex>. Число <tex>e</tex> называется открытой экспонентой.
# Выбирается число <tex>d</tex>, мультипликативно обратное к числу <tex>e</tex> по модулю <tex>\phi (n)</tex>, то есть число, удовлетворяющее сравнению: <tex>d \cdot e \equiv 1 (mod\ \phi (n))</tex>. Число <tex>d</tex> называется секретной экспонентой.
# Пара <tex>\{e, n\}</tex> публикуется в качестве открытого ключа RSA.
# Пара <tex>\{d, n\}</tex> играет роль закрытого ключа RSA и держится в секрете.
 
Теперь, чтобы зашифровать сообщение <tex>m</tex>, нужно посчитать <tex>c = m^{e}\ mod\ n</tex>, а чтобы расшифровать - <tex>m = c^{d}\ mod\ n</tex>. Однако такая схема не используется на практике по причине того, что она не является практически надежной, так как односторонняя функция является детерминированной. Чтобы избежать такого, используют сеансовый ключ. С помощью RSA шифрования собеседники обмениваются симметричными ключами сессии, и дальше уже общаются с их помощью.
 
==IPSec==
'''IPSec''' - набор протоколов для обеспечения защиты данных, передаваемых по межсетевому протоколу IP, является безопасностью на сетевом уровне. IPSec может шифровать и проводить проверку подлинности IP-пакетов. Поэтому IPSec предоставляет возможность защищать передачу данных в сетях LAN, в открытых и закрытых WAN, а также в сети Интернет.
 
== Межсетевой экран ==
{{Определение
|definition=
'''Межсетевой экран''' (англ. ''firewall'', нем. ''brandmauer'') - это система аппаратных или программных компонентов, предназначенных для ограничения доступа между сетями, чаще всего между Интернетом и частной сетью. Межсетевой экран является частью системы безопаснсти, направленных на защиту информационных ресурсов организации.
}}
 
==== Цели====
# Предоставить людям из организации доступ к интернету так, чтобы лишние люди не могли получить доступ к внутренней информации компании.
# Воздвигнуть барьер между ненадежным программным обеспечением, общественными веб-серверами Вашей организации и конфиденциальной информацией, которая находится во внутренней сети.
 
====Основные идеи====
# Поместить специальное утройство-шлюз между внешним миром и внутренней сетью организации.
# Все сигналы должны сначала идти к шлюзу, где заранее определено, допустим ли подобный сигнал или нет.
Межсетевые экраны не защищают от атак, которым удалось проникнуть за "стену", от передачи внутренней информации недобросовестными сотрудниками во снешний мир и от передачи во внутреннюю сеть файлов или программ, содержащих вирусы.
 
===Типы межсетевых экранов===
==== Пакетные фильтры====
[[Файл:packet_filtering.gif|left|Пакетный фильтр.]]
Пакетный фильтр (англ. ''packet-filter'') исходя из ограничений, определяет может или не может данный пакет пройти сквозь "стену". Фильтр основывается на данных,содержащихся в пакетах: источнике, адресе назначения, порте, транспортном протоколе и интерфейсе. Межсетевой экран может иметь разные настройки по умолчанию: либо он пропускает все неотфильтрованные пакеты, либо пропускает только отфильтрованные. Плюсом такого подхода явлется простота и быстрота. Недостатком является низкий уровень защищенности. В коммерческом мире, простые пакетные фильтры становятся все более редкими: все основные межсетевые экраны имеют некоторую степень мониторинга состояния.
<br clear="both" />
==== Шлюзы сеансового уровня ====
[[Файл:Stateful_packet_filtering.gif|left|Пакетный фильтр с учетом состояния.]]
Шлюз сеансового уровня (англ. ''stateful packet-filtering firewal'') - это пакетный фильтр с таблицей состояний. В самом простом варианте шлюз сеансового уровня поддерживает отслеживание состояния TCP соединения, начиная с "тройного рукопожатия" (SYN, SYN/ACK, ACK), которое происходит на старте каждой TCP транзакции и заканчивая последним пакетом сессии (FIN или RST).
Обычно, после того как шлюз сеансового уровня проверил, что данная транзакция разрешена(основываясь на источике/адресе назначения/порте), он фиксирует изначачальное рукопожатие. Если рукопожатие совершилось в разумное время, проверяются все заголовки всех TCP подпакетов для этой транзакции на соответствие с таблицей состояний. IP адрес источника, порт источника, IP адрес назначения, порт назначения и номер сообщения проверяются пока одна из сторон не закроет транзакцию, посылая FIN или RST.
 
Данный вид межсетегого экрана работает лучше, чем обычная пакетная фильтрация, так как без данных о состоянии соединений межсетевой экран не может знать, является ли данное сообщение частью уже установленной сессии или является первым сообщением сессии. Некоторые простые пакетные фильтры могут считать, что все сообщения с проставленным ACK флагом являются частью установленной сессии, что является потенциальной уязвимостью. Также знание о состоянии соединений защищает внутреннюю сеть от сканирования(например утилитой nmap), так как межсетевой экран сразу же обнаруживает любое несоответствие с данными в таблице и блокирует подозрительный ip адрес.
<br clear="both" />
==== Посредники прикладного уровня====
[[Файл:Application-layer_proxy.jpg|left|400px|Шлюз сеансового уровня]]
Посредники прикладного уровня (англ. ''application-layer proxying''). В отличие от предыдущих пакетных фильтров, которые проверяют, но не изменяют пакетов их (кроме некоторых случаев переадресации), данные межсетевые экраны выступают в качестве посредника во всех сеансах передачи данных.
Шлюзы сеансового уровня называют прикладными, так как они используют множество прикладных данных о сервисах, с помощью которых они обеспечивают не только улучшение производительности, но и безопасности, в отличие от обычных прокси(посредников).
Недостатками данного типа межсетевых экранов являются большие затраты времени и ресурсов на анализ каждого пакета. По этой причине они обычно не подходят для приложений реального времени. Другим недостатком является невозможность автоматического подключения поддержки новых сетевых приложений и протоколов, так как для каждого из них необходим свой агент.
<br clear="both" />
==== Инспекторы состояния. ====
Инспектор состояния - такой межсетевой экран, который использует технологию проверки состояния (англ. ''Stateful Inspection''). Он представляет собой межсетевой экран, сочетающий фильтрацию трафика с сетевого по прикладной уровень.
 
<br clear="both" />
333
правки

Навигация