Изменения

Перейти к: навигация, поиск

Сетевая безопасность

13 145 байт добавлено, 19:21, 4 сентября 2022
м
rollbackEdits.php mass rollback
[[Файл:Public_Key_Cryptography.png]]
Можно сделать вывод, что должно выполняться 2 требования: <tex>K_{B}^{-}</tex> и <tex>K_{B}^{+}</tex> такие, что <tex>K_{B}^{-}(K_{B}^{+}(m)) = m</tex>, и, зная публичный ключ, человек не должен иметь возможности посчитать приватный.Одним из самых известных алгоритмов является RSA (Rivest-Shamir-Adleman). Это криптографический алгоритм с открытым ключом, который основывается на вычислительной сложности задачи факторизации больших целых чисел. В криптографической системе RSA каждый ключ состоит из пары целых чисел. Каждый участник создает свой открытый и закрытый ключ самостоятельно, при этом эти ключи являются согласованной парой в том смысле, что они являются взаимно обратными, то есть: <tex>\forall</tex> допустимых пар открытого и закрытого ключей <tex>(p, s)</tex> <tex>\exists</tex> соответствующие функции шифрования <tex>E_{p}(x)</tex> и расшифрования <tex>D_{s}(x)</tex> такие, что <tex>\forall</tex> сообщений <tex>m \in M</tex>, где <tex>M</tex> - множество допустимых сообщений, <tex>m = D_{s}(E_{p}(m)) = E_{p}(D_{s}(m))</tex>. RSA-ключи генерируются следующим образом:# Выбираются два различных простых числа <tex>p</tex> и <tex>q</tex> заданного размера (например, 1024 бита каждое).# Вычисляется их произведение <tex>n = p \cdot q</tex>, которое называется модулем.# Вычисляется значение функции Эйлера от числа <tex>n</tex>: <tex>\phi (n) = (p - 1) \cdot (q - 1)</tex>.# Выбирается целое число <tex>e</tex> <tex>(1 < e < \phi (n))</tex>, взаимно простое со значением функции <tex>\phi (n)</tex>. Обычно в качестве <tex>e</tex> берут простые числа, содержащие небольшое количество единичных бит в двоичной записи, например, простые числа Ферма <tex>17</tex>, <tex>257</tex> или <tex>65537</tex>. Число <tex>e</tex> называется открытой экспонентой.# Выбирается число <tex>d</tex>, мультипликативно обратное к числу <tex>e</tex> по модулю <tex>\phi (n)</tex>, то есть число, удовлетворяющее сравнению: <tex>d \cdot e \equiv 1 (mod\ \phi (n))</tex>. Число <tex>d</tex> называется секретной экспонентой.# Пара <tex>\{e, n\}</tex> публикуется в качестве открытого ключа RSA.# Пара <tex>\{d, n\}</tex> играет роль закрытого ключа RSA и держится в секрете. Теперь, чтобы зашифровать сообщение <tex>m</tex>, нужно посчитать <tex>c = m^{e}\ mod\ n</tex>, а чтобы расшифровать - <tex>m = c^{d}\ mod\ n</tex>. Однако такая схема не используется на практике по причине того, что она не является практически надежной, так как односторонняя функция является детерминированной. Чтобы избежать такого, используют сеансовый ключ. С помощью RSA шифрования собеседники обмениваются симметричными ключами сессии, и дальше уже общаются с их помощью. ==IPSec=='''IPSec''' - набор протоколов для обеспечения защиты данных, передаваемых по межсетевому протоколу IP, является безопасностью на сетевом уровне. IPSec может шифровать и проводить проверку подлинности IP-пакетов. Поэтому IPSec предоставляет возможность защищать передачу данных в сетях LAN, в открытых и закрытых WAN, а также в сети Интернет. == Межсетевой экран =={{Определение|definition='''Межсетевой экран''' (англ. ''firewall'', нем. ''brandmauer'') - это система аппаратных или программных компонентов, предназначенных для ограничения доступа между сетями, чаще всего между Интернетом и частной сетью. Межсетевой экран является частью системы безопаснсти, направленных на защиту информационных ресурсов организации.}} ==== Цели====# Предоставить людям из организации доступ к интернету так, чтобы лишние люди не могли получить доступ к внутренней информации компании. # Воздвигнуть барьер между ненадежным программным обеспечением, общественными веб-серверами Вашей организации и конфиденциальной информацией, которая находится во внутренней сети. ====Основные идеи====# Поместить специальное утройство-шлюз между внешним миром и внутренней сетью организации.# Все сигналы должны сначала идти к шлюзу, где заранее определено, допустим ли подобный сигнал или нет.Межсетевые экраны не защищают от атак, которым удалось проникнуть за "стену", от передачи внутренней информации недобросовестными сотрудниками во снешний мир и от передачи во внутреннюю сеть файлов или программ, содержащих вирусы. ===Типы межсетевых экранов======= Пакетные фильтры====[[Файл:packet_filtering.gif|left|Пакетный фильтр.]]Пакетный фильтр (англ. ''packet-filter'') исходя из ограничений, определяет может или не может данный пакет пройти сквозь "стену". Фильтр основывается на данных,содержащихся в пакетах: источнике, адресе назначения, порте, транспортном протоколе и интерфейсе. Межсетевой экран может иметь разные настройки по умолчанию: либо он пропускает все неотфильтрованные пакеты, либо пропускает только отфильтрованные. Плюсом такого подхода явлется простота и быстрота. Недостатком является низкий уровень защищенности. В коммерческом мире, простые пакетные фильтры становятся все более редкими: все основные межсетевые экраны имеют некоторую степень мониторинга состояния.<br clear="both" />==== Шлюзы сеансового уровня ====[[Файл:Stateful_packet_filtering.gif|left|Пакетный фильтр с учетом состояния.]]Шлюз сеансового уровня (англ. ''stateful packet-filtering firewal'') - это пакетный фильтр с таблицей состояний. В самом простом варианте шлюз сеансового уровня поддерживает отслеживание состояния TCP соединения, начиная с "тройного рукопожатия" (SYN, SYN/ACK, ACK), которое происходит на старте каждой TCP транзакции и заканчивая последним пакетом сессии (FIN или RST). Обычно, после того как шлюз сеансового уровня проверил, что данная транзакция разрешена(основываясь на источике/адресе назначения/порте), он фиксирует изначачальное рукопожатие. Если рукопожатие совершилось в разумное время, проверяются все заголовки всех TCP подпакетов для этой транзакции на соответствие с таблицей состояний. IP адрес источника, порт источника, IP адрес назначения, порт назначения и номер сообщения проверяются пока одна из сторон не закроет транзакцию, посылая FIN или RST.  Данный вид межсетегого экрана работает лучше, чем обычная пакетная фильтрация, так как без данных о состоянии соединений межсетевой экран не может знать, является ли данное сообщение частью уже установленной сессии или является первым сообщением сессии. Некоторые простые пакетные фильтры могут считать, что все сообщения с проставленным ACK флагом являются частью установленной сессии, что является потенциальной уязвимостью. Также знание о состоянии соединений защищает внутреннюю сеть от сканирования(например утилитой nmap), так как межсетевой экран сразу же обнаруживает любое несоответствие с данными в таблице и блокирует подозрительный ip адрес.<br clear="both" />==== Посредники прикладного уровня====[[Файл:Application-layer_proxy.jpg|left|400px|Шлюз сеансового уровня]]Посредники прикладного уровня (англ. ''application-layer proxying''). В отличие от предыдущих пакетных фильтров, которые проверяют, но не изменяют пакетов их (кроме некоторых случаев переадресации), данные межсетевые экраны выступают в качестве посредника во всех сеансах передачи данных.Шлюзы сеансового уровня называют прикладными, так как они используют множество прикладных данных о сервисах, с помощью которых они обеспечивают не только улучшение производительности, но и безопасности, в отличие от обычных прокси(посредников).Недостатками данного типа межсетевых экранов являются большие затраты времени и ресурсов на анализ каждого пакета. По этой причине они обычно не подходят для приложений реального времени. Другим недостатком является невозможность автоматического подключения поддержки новых сетевых приложений и протоколов, так как для каждого из них необходим свой агент.<br clear="both" />==== Инспекторы состояния. ====Инспектор состояния - такой межсетевой экран, который использует технологию проверки состояния (англ. ''Stateful Inspection''). Он представляет собой межсетевой экран, сочетающий фильтрацию трафика с сетевого по прикладной уровень. <br clear="both" />
1632
правки

Навигация