Симуляция одним распределением другого — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
==Распределение==
 
==Распределение==
 
[[Файл:Распределение1_4.JPG‎|200px|thumb|right|Геометрическое распределение с p = 3/4]]
 
[[Файл:Распределение1_4.JPG‎|200px|thumb|right|Геометрическое распределение с p = 3/4]]
[[Файл:p_and_q.JPG|200px|thumb|right|Симуляция распределений]]
 
 
'''Распределение — '''одно из основных понятий теории вероятностей и математической статистики. Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных — т. н. функцией распределения или плотностью вероятности.
 
'''Распределение — '''одно из основных понятий теории вероятностей и математической статистики. Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных — т. н. функцией распределения или плотностью вероятности.
  
Строка 18: Строка 17:
 
Дисперсия вычисляется аналогично.
 
Дисперсия вычисляется аналогично.
 
: <tex dpi = "140">D(X) = \frac{q}{p^{2}} = \frac{4}{9} </tex>
 
: <tex dpi = "140">D(X) = \frac{q}{p^{2}} = \frac{4}{9} </tex>
Рассмотрим теперь общий случай.
+
Обобщим.
 
Допустим у нас есть распределение <tex>p.</tex> Нам нужно получить распределение <tex>q.</tex>:
 
Допустим у нас есть распределение <tex>p.</tex> Нам нужно получить распределение <tex>q.</tex>:
* <tex>p = \frac{1}{k}, q_1 </tex> и <tex> q_2, q_1 + q_2 = 1.</tex> Проводим эксперимент, если попадаем в область пересекающуюся с <tex> q_1 </tex> и <tex> q_2,</tex> то увеличиваем ее и повторяем эксперимент. Вероятность неудачи на шаге {{---}} <tex>\frac{1}{k}</tex> Математическое ожидание количества экспериментов {{---}} <tex> \frac{k}{k-1}, max(\frac{k}{k-1}) = 2</tex> <tex>(k = 2) </tex>
+
* Для начала рассмотрим случай, когда все <tex>p_i = \frac{1}{k},</tex> а в распределениии <tex>q </tex>  количество элементарных исходов равно <tex>2.</tex> Проводим эксперимент, если попадаем в область пересекающуюся с <tex> q_1 </tex> и <tex> q_2,</tex> то увеличиваем ее и повторяем эксперимент. На рисунке ниже красным обозначенно распределение <tex> q. </tex> Вероятность того, что на этом шаге эксперимент не закончится {{---}} <tex>\frac{1}{k}</tex> Математическое ожидание количества экспериментов {{---}} <tex> \frac{k}{k-1}, max(\frac{k}{k-1}) = 2 (</tex>при <tex>k = 2) </tex>
* <tex>p = \frac{1}{k}, q_j, \sum\limits_{j}q_j = 1. </tex> Повторим эксперимент <tex> t </tex> раз. <tex> k^t \ge 2n, t \ge \log\limits_{k}2n </tex> Отрезок разбился на <tex> k^t </tex> отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов <tex> \approx 2t </tex>
+
[[Файл:Sim pic1.JPG‎|400px]]
 +
* Теперь рассмотри случай, когда все элементарные исходы <tex>p_i</tex> по прежнему равновероятны <tex>(p_i = \frac{1}{k}),</tex>а количество элементарных исходов распределения <tex>q</tex> равно <tex>n (\sum\limits_{j=1}^{n}q_j = 1). </tex> Повторим эксперимент <tex> t </tex> раз. <tex> k^t \ge 2n, t \ge \log\limits_{k}2n </tex> Отрезок разбился на <tex> k^t </tex> отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов <tex> \approx 2t </tex>
 +
[[Файл:Sim pic2.JPG‎|400px]]
 
* <tex>p_i, \sum\limits_{i}p_i = 1, q_j, \sum\limits_{j}q_j = 1. </tex> Берем <tex> p_i </tex> и пусть оно максимальной длины. Проводим <tex> t </tex> экспериментов. <tex>{p_i}^t < \frac{1}{2n}, </tex> все остальные еще меньше. Суммарная длина отрезков не больше <tex>\frac{1}{2}.</tex> Нужно <tex> t \ge \log\limits_{p}\frac{1}{2n} </tex>  
 
* <tex>p_i, \sum\limits_{i}p_i = 1, q_j, \sum\limits_{j}q_j = 1. </tex> Берем <tex> p_i </tex> и пусть оно максимальной длины. Проводим <tex> t </tex> экспериментов. <tex>{p_i}^t < \frac{1}{2n}, </tex> все остальные еще меньше. Суммарная длина отрезков не больше <tex>\frac{1}{2}.</tex> Нужно <tex> t \ge \log\limits_{p}\frac{1}{2n} </tex>  
 +
[[Файл:Sim pic3.JPG‎|400px]]
 
Вывод: из любого исходного распределения можно получить любое нужное нам распределение.
 
Вывод: из любого исходного распределения можно получить любое нужное нам распределение.
 
==См. также==  
 
==См. также==  

Версия 06:44, 17 января 2011

Распределение

Геометрическое распределение с p = 3/4

Распределение — одно из основных понятий теории вероятностей и математической статистики. Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных — т. н. функцией распределения или плотностью вероятности.

Примеры распределений

  • Биномиальное распределение
  • Нормальное распределение
  • Равномерное распределение

Симуляция распределений

Рассмотрим следующий случай. Допустим, у нас есть честная монета. А нам надо получить распределения с вероятностями [math]1/3[/math]. Проведем селдующий эксперимент. Подкинем монету дважды. И если выпадет два раза орел - эксперимент не удался, повторим его. Предположим, что у нас есть последовательность экспериментов. Вероятность успеха [math]p = \frac{3}{4}[/math]. Вероятность неудачи [math]q = 1 - p = \frac{1}{4}[/math] Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина [math]X[/math] равна количествуэкспериментов, необходимых для достижения успеха. Тогда [math]X[/math] принимает значения [math]\{1,2,...\}[/math] и для [math] k \ge 1 [/math]

[math]{p}(X = k) = q^{k-1}p,[/math]

поскольку перед наступлением успешного эксперимента было проведено [math] k - 1 [/math] неуспешных. Распределение вероятности, удовлетворяющее этому уравнению называется геометрическим распределением. Так как [math] q \lt 1 [/math] можно посчитать математическое ожидание геометрического распределения.

[math]E(X) = \sum\limits_{k = 0}^{\infty}kq^{k-1}p = \frac{p}{q}\sum\limits_{k = 0}^{\infty}kq^{k} = \frac{p}{q} \frac{q}{(1 - q)^{2}} = \frac{1}{p} =\frac{1}{\frac{3}{4}} = \frac{4}{3}. [/math]

Дисперсия вычисляется аналогично.

[math]D(X) = \frac{q}{p^{2}} = \frac{4}{9} [/math]

Обобщим. Допустим у нас есть распределение [math]p.[/math] Нам нужно получить распределение [math]q.[/math]:

  • Для начала рассмотрим случай, когда все [math]p_i = \frac{1}{k},[/math] а в распределениии [math]q [/math] количество элементарных исходов равно [math]2.[/math] Проводим эксперимент, если попадаем в область пересекающуюся с [math] q_1 [/math] и [math] q_2,[/math] то увеличиваем ее и повторяем эксперимент. На рисунке ниже красным обозначенно распределение [math] q. [/math] Вероятность того, что на этом шаге эксперимент не закончится — [math]\frac{1}{k}[/math] Математическое ожидание количества экспериментов — [math] \frac{k}{k-1}, max(\frac{k}{k-1}) = 2 ([/math]при [math]k = 2) [/math]

Sim pic1.JPG

  • Теперь рассмотри случай, когда все элементарные исходы [math]p_i[/math] по прежнему равновероятны [math](p_i = \frac{1}{k}),[/math]а количество элементарных исходов распределения [math]q[/math] равно [math]n (\sum\limits_{j=1}^{n}q_j = 1). [/math] Повторим эксперимент [math] t [/math] раз. [math] k^t \ge 2n, t \ge \log\limits_{k}2n [/math] Отрезок разбился на [math] k^t [/math] отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов [math] \approx 2t [/math]

Sim pic2.JPG

  • [math]p_i, \sum\limits_{i}p_i = 1, q_j, \sum\limits_{j}q_j = 1. [/math] Берем [math] p_i [/math] и пусть оно максимальной длины. Проводим [math] t [/math] экспериментов. [math]{p_i}^t \lt \frac{1}{2n}, [/math] все остальные еще меньше. Суммарная длина отрезков не больше [math]\frac{1}{2}.[/math] Нужно [math] t \ge \log\limits_{p}\frac{1}{2n} [/math]

Sim pic3.JPG Вывод: из любого исходного распределения можно получить любое нужное нам распределение.

См. также

Литература