Изменения

Перейти к: навигация, поиск

Синтетические наборы данных

1751 байт добавлено, 17:49, 20 мая 2021
Дополнение
{{Определение
|definition='''Синтетические данные''' — это программно сгенерированные данные, используемые в прикладных задачах бизнес-приложениях (в том числе в машинном обучении).
}}
Нередко возникают ситуации, когда получение реальных данных бизнес-процессов сложно или дорого, но при этом известны требования к таким объектамбизнес-процессам, правила создания и законы распределения. Как правило, это происходит, когда речь идёт о чувствительных персональных данных — например, информации о банковских счетах или медицинской информации. В таких случаях необходимые наборы данных можно [[Генерация объектов|программно сгенерировать]].
== Применение Виды генерации ==
Сгенерированные объекты можно использовать в [[Общие понятия#Классификация задач машинного обучения|задаче обучения с учителем]] для расширения обучающего множества, сведя её Существует два основных подхода к задачам частичного обучения и самообучения. Довольно распространённым подходом является обучение сначала на большом наборе генерации синтетических наборов данных, а затем дообучение на небольшом наборе имеющихся реальных данных. При этом в тестовых множествах использовать синтетические наборы данных нельзя: в них должны быть только реальные объекты.
Синтетические В случае, когда реальные данные используют не только при недоступности отсутствуют или их сбор невозможен (из-за большой длительности или дороговизны процесса), наборы генерируются полностью случайным образом на основе некой статистической модели, которая учитывает законы распределения реальныхданных. Однако, но и для такой подход не всегда оправдывает себя из-за того, чтобы изменить распределение классов что синтетические данные могут не учитывать весь спектр возможных случаев, и полученная с помощью такого набора модель может давать непредсказуемые результаты в уже имеющихся данных, дополнив их по [[Алгоритмы сэмплирования|определённому алгоритму]]<ref name="wiki:oversampling">Oversampling and undersampling in data analysis — https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis — Retrieved January 11, 2021</ref>крайних случаях.
При генерации синтетических Также применяется [[wikipedia:Data_augmentation|аугментация]] (англ. augmentation) — генерация наборов на основе имеющихся бизнес-процессов. К имеющимся данным применяются различные способы искажения: например, для изображений могут использоваться различные геометрические преобразования, искажения цвета, кадрирование, поворот, добавление шума и иные. Для числовых данных необходимо учитывать специфику каждого конкретного случаямогут использоваться такие искажения, общего алгоритмакак добавление объектов с усреднёнными значениями, подходящего для всех случаев не существует. Как правилосмешивание с объектами из другого распределения, общие алгоритмы наподобие добавления средних значений оказываются нерепрезентативнымидобавление случайных выбросов.
Достоинства Преимущества использования синтетических данных:
* Возможность генерации наборов данных практически любого размера.
* Излишняя «стерильность» получаемых данных: в общем случае неизвестно, какими могут быть выбросы в реальных данных<ref>Если выбросы известны, то проблема может быть решена путём настройки параметров генератора.</ref>.
== Виды генерации ==
Существует два основных подхода == Применение == Сгенерированные объекты можно использовать в [[Общие понятия#Классификация задач машинного обучения|задаче обучения с учителем]] для расширения обучающего множества, сведя её к генерации задачам [[Обучение с частичным привлечением учителя|частичного обучения]] и [[Обучение с частичным привлечением учителя#Самообучение (Self Training)|самообучения]]. Довольно распространённым подходом является обучение сначала на большом наборе синтетических данных, а затем дообучение на небольшом наборе имеющихся реальных данных. Иногда при обучении реальные данные не используются вовсе. При этом в тестовых множествах использовать синтетические наборы данных нельзя: в них должны быть только реальные объекты. Синтетические данные используют не только при недоступности реальных, но и для того, чтобы изменить распределение классов в уже имеющихся данных, дополнив их по [[Алгоритмы сэмплирования|определённому алгоритму]]<ref name="wiki:oversampling">Oversampling and undersampling in data analysis — https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis — Retrieved January 11, 2021</ref>.  Синтетические данные активно используются при обучении алгоритмов управления [[wikipedia:Self-driving car|автономным транспортом]]. Эти алгоритмы решают две задачи: сначала [[Обнаружение и обработка дорожных знаков и пешеходов|выявляют окружающие объекты]] — машины, дорожные знаки, пешеходов, а затем принимают решение о направлении и скорости дальнейшего движения. При реализации таких алгоритмов наиболее важно поведение транспортного средства в критических ситуациях, таких как помехи на дороге или некорректные показания сенсоров — от этого могут зависеть жизни людей. В реальных данных же, наоборот, в основном присутствуют штатные ситуации. Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется набор, в котором входными данными считаются полученные изображения, а целевыми — исходные. В самом деле, получить реальные данные для такой задачи — фотографию и её же искажённую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется. Таким образом, если исходные изображения достаточно хорошо описывали источник данных, то полученный набор данных можно применять для обучения алгоритма восстановления изображений, устраняющего применённые преобразования. Также с помощью синтетических наборов данныхможно упростить обучение алгоритмов [[Компьютерное зрение|компьютерного зрения]], решающих задачи [[Сегментация изображений|семантической сегментации]], [[Компьютерное зрение#Идентификация|поиска]] и [[Компьютерное зрение#Распознавание объектов|локализации]] объектов. В данном случае подходят наборы, в которых искомые объекты определённым образом наносятся на фоновое изображение. В частности, таким объектом может быть текст — тогда с помощью полученного набора может быть решена задача [[Распознавание текста на изображении|распознавания текста на изображении]].
В случае, когда реальные Синтетические данные отсутствуют или их сбор невозможен (из-за большой длительности или дороговизны процесса)используются и для создания алгоритмов [[Реидентификация|реидентификации]]<sup>[на 25.01.21 не создан]</sup> — определения, наборы генерируются полностью случайным образом действительно ли на основе некой статистической моделидвух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, которая учитывает законы распределения реальных данныхна пограничных пунктах и так далее. Однако, такой подход не всегда оправдывает себя из-за тогоВ этом случае реальные данные собрать довольно сложно, потому что синтетические данные могут не учитывать весь спектр возможных случаевтребуется найти много фотографий одних и тех же людей в разных позах, с разных ракурсов и полученная с помощью такого набора модель может давать непредсказуемые результаты в крайних случаяхразной одежде.
Также применяется [[wikipedia:Data_augmentation|аугментация]] (англ. augmentation) — генерация При генерации синтетических наборов на основе имеющихся реальных данных. К имеющимся данным применяются различные способы искажения: напримернеобходимо учитывать специфику каждого конкретного случая, общего алгоритма, подходящего для изображений могут использоваться различные геометрические преобразования, искажения цвета, кадрирование, поворот, добавление шума и иныевсех случаев не существует. Для числовых данных могут использоваться такие искажения, как добавление объектов с усреднёнными значениями, смешивание с объектами из другого распределения Как правило, добавление случайных выбросовобщие алгоритмы наподобие добавления средних значений оказываются нерепрезентативными.
== Примеры ==
=== TextSharpener ===
Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется набор, в котором входными данными считаются полученные изображения, а целевыми — исходные. В самом деле, получить реальные данные для такой задачи — фотографию и её же нечеткую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется. Таким образом, если исходные изображения достаточно хорошо описывали источник данных, то полученный набор данных можно применять для обучения алгоритма восстановления изображений, устраняющего применённые преобразования. Один из известных алгоритмов такого рода — TextSharpenerАлгоритм TextSharpener<ref name="TextSharpener"/>. Этот алгоритм, разработанный по методологии SCRUM в Университете Исландии и основанный на [[Сверточные нейронные сети|свёрточной нейронной сети]], позволяет убирать размытие текста на изображениях (см. рисунок 1). Для подготовки набора данных, который подошёл для обучения такого алгоритма, хватило [https://github.com/gardarandri/TextSharpener/blob/master/generator/GenImages.py тривиального скрипта] на Python, генерирующего случайные прямоугольники и надписи на них, а затем размывавшего их, с помощью библиотеки PIL<ref name="PIL">Pillow — Pillow (PIL Fork) 8.1.0 Documentation — https://pillow.readthedocs.io/en/stable/ — Retrieved January 25, 2021</ref>.
[[Файл:Jefferson_Graham_on_Manhattan_Beach_Pier.jpeg|200px|thumb|left|Рисунок 2. Фотография, сделанная широкоугольной камерой<ref>https://commons.wikimedia.org/wiki/File:Jefferson_Graham_on_Manhattan_Beach_Pier.jpg — Retrieved January 24, 2021</ref>.]]
Генератор изображений комнат OmniSCV<ref name="OmniSCV">OmniSCV — https://www.mdpi.com/1424-8220/20/7/2066/htm — Retrieved January 11, 2021</ref> используется при разработке роботов для обучения алгоритмов [[Компьютерное зрение|компьютерного зрения]] для устранения искажений широкоугольных объективов и неидеальных условий освещённости.
Генератор умеет симулировать различные варианты объективов бизнес-процессов — [[wikipedia:Equirectangular projection|равноугольные]] и [[wikipedia:Cylindrical perspective|цилиндрические]] панорамы, [[wikipedia:Fisheye lens|«рыбьи глаза»]] и [[wikipedia:Catadioptric system|катадиоптрические системы]], а также сопровождать сгенерированные изображения комнат вспомогательной информацией об окружающем пространстве и параметрах используемой камеры(см. рисунок 3).
Изображения этого набора данных генерируются с помощью графического движка Unreal Engine 4<ref name="ue">EpicGames. Unreal Engine 4 Documentation. — https://docs.unrealengine.com/en-US/index.html — Retrieved January 21, 2021</ref> и плагина UnrealCV<ref name="uecv">UnrealCV — https://unrealcv.org/ — Retrieved January 24, 2021</ref>. Каждое преобразование задаётся несложной функцией, связывающей координаты плоскости исходного изображения и луча, исходящего из окружающей среды. Например, для равноугольной проекции удобнее всего использовать [[wikipedia:Spherical coordinate system|сферические координаты]]: <tex>
=== FlyingChairs ===
Набор данных FlyingChairs<ref name="FlyingChairs" /> и его производные представляют из себя наборы изображений, на которые искусственно добавлены предметы в движении (например, стулья, как на рисунке 4). Эти наборы данных применяются при решении таких задач компьютерного зрения, как [[Сегментация изображений|семантическая сегментация]], в алгоритмах [[Компьютерное зрение#Идентификация|поиск]] и [[Компьютерное зрение#Распознавание объектов|локализациякомпьютерного зрения]] объекта, а также более сложных, например, в частности для поиска движения.
FlyingChairs строится следующим образом: авторы выбрали несколько сотен изображений с фотохостинга [https://flickr.com Flickr] из категорий «город», «ландшафт», «горы». Части этих изображений использовались в качестве фона. Далее на них накладывались стулья<ref name="fc-chairs">Aubry M., Maturana D., Efros A., Russell B., Sivic J. Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models — InCVPR, 2014</ref>, для каждого стула были представлены 62 различных угла обзора.
=== VC-Clothes ===
Набор данных VC-Clothes<ref name="VC-Clothes"/> создан для разработки алгоритмов '''реидентификации''' — определения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. VC-Clothes Он представляет из себя сгенерированные изображения одинаковых людей в разной одежде и на разном фоне. Помимо реидентификации, этот набор данных также может быть использован для решения задачи семантической [[Сегментация изображений|сегментации]], для отделения пикселей, соответствующих одежде, от пикселей, соответствующих лицу персонажа.
Для создания набора была использована известная компьютерная игра Grand Theft Auto V. Эта игра поддерживает детальную настройку внешнего вида персонажей, произвольные параметры окружающей среды (освещение, угол обзора) и большое количество встроенных сцен — множество улиц, зданий и других мест. При генерации фиксируется маршрут каждого персонажа и позиции камер. Не со всех ракурсов распознаётся непосредственно лицо (см. рисунок 5), но человек вполне может быть распознан по полу, возрасту, фигуре, причёске и другим характеристикам. В итоге набор изображений включает 512 персонажей, 4 сцены и в среднем 9 изображений для каждого персонажа и каждой сцены.
Чтобы полученный набор выглядел натурально, применяется следующий подход<ref name="SynthText-paper">Gupta A., Vedaldi A., Zisseman A. Synthetic Data for Text Localisation in Natural Images // IEEE Conference on Computer Vision and Pattern Recognition — 2016</ref>. Сначала изображение делится на несколько областей в зависимости от значений соседних цветов и текстуры. Затем с помощью [[Сверточные нейронные сети|CNN]] строится карта глубины — определяется, какая точка ближе к камере, а какая дальше (см. рисунок 7). После этого можно по каждой области определить нормаль к поверхности. Алгоритм исключает из выбора неподходящие поверхности — очень маленькие, непропорциональные или ортогональные направлению съемки. Наконец, на основе цвета области выбирается цвет текста (и иногда — контура), случайным образом выбирается шрифт, после чего текст «накладывается» на изображение с помощью геометрических трансформаций и преобразования Пуассона. Этот процесс повторяется несколько раз, чтобы наложить сразу несколько текстовых объектов на изображение.
{{wide image|Synthtext-Generation-Process.png|1200px1100px|Рисунок 7. Процесс нанесения текста на изображение. Слева направо: исходное изображение; карта глубины (светлее — дальше); разбиение на поверхности; области для нанесения текста и случайно выбранный для них цвет; готовое изображение<ref name="SynthText-paper"/>.}}
[[Файл:UnityEyes.png|200px|thumb|left|Рисунок 8. Образцы глаз, смотрящие в различных направлениях<ref name="unityeyes">Wood, E., Baltrusaitis, T., Morency, L., Robinson, P., Bulling, A. Learning an appearance-based gaze estimator from one million synthesised images // Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications — 2016</ref>.]]
=== UnityEyes ===
Нередко на практике встречается задача '''окулографии''' (англ. gaze estimation) — определения направления взгляда человека по фотографии. Для решения этой задачи, как правило, необходим довольно большой объем тренировочных данных. В 2016 году по методологии SCRUM была разработана утилита [https://www.cl.cam.ac.uk/research/rainbow/projects/unityeyes/ UnityEyes], которая позволяет в реальном времени генерировать реалистичные изображения глаз, направленных в нужном направлении, показанные с требуемого ракурса(см. рисунок 8). Это позволяет решать задачу '''окулографии''' (англ. gaze estimation) — определения направления взгляда человека по фотографии. Программист бизнес-приложений получает в два раза больше программистов других приложений, поэтому он должен знать и эти алгоритмы.
Изображения генерируются с помощью игрового движка Unity 5, доработанного авторами UnityEyes для значительного ускорения рендеринга. Используются 20 трёхмерных изображений головы людей различного возраста, с различным цветом кожи и формой глаз. Помимо этого, используются HDR-панорамы для получения естественного окружающего зеркального отблеска в глазах.
=== NVIDIA DRIVE ===
Автономный транспорт — это вид Для обучения автономного транспорта, управление которым осуществляется без участия человека при помощи оптических датчиков, систем геолокации и компьютерных алгоритмов<ref>Self-driving car — https://en.wikipedia.org/wiki/Self-driving_car — Retrieved January 8, 2021</ref>. Алгоритму управления транспортным средством нужно решить две задачи: сначала [[Обнаружение и обработка дорожных знаков и пешеходов|выявить окружающие объекты]] — машины, дорожные знаки, пешеходов, а затем принять решение о направлении и скорости дальнейшего движения. При реализации таких алгоритмов наиболее важно поведение транспортного средства в критических ситуациях, таких как помехи на дороге или некорректные показания сенсоров — от этого могут зависеть жизни людей. В реальных данных же, наоборот, в основном присутствуют штатные ситуации. Для решения этой проблемы компания NVIDIA разработала по методологии SCRUM платформу NVIDIA DRIVE Constellation<ref name="nvidia" />, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камеры, радара и лидаров. В обучении компания использует используется два режима — симуляция после восприятия (англ. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-end simulation''). В режиме симуляции объектов из сгенерированных миров (см. рисунок 9) обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах. 
== См. также ==
Анонимный участник

Навигация