Изменения

Перейти к: навигация, поиск

Синтетические наборы данных

20 993 байта добавлено, 19:26, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Определение|definition='''Синтетические данные''' — это наборы данных для применения программно сгенерированные данные, используемые в прикладных задачах бизнес-приложениях (в том числе в машинном обучении).}} Нередко возникают ситуации, которые не были получены исключительно путём прямого сбора когда получение реальных бизнес-процессов сложно или дорого, но при этом известны требования к таким бизнес-процессам, правила создания и измеренийзаконы распределения.<ref nameКак правило, это происходит, когда речь идёт о чувствительных персональных данных — например, информации о банковских счетах или медицинской информации. В таких случаях необходимые наборы данных можно [[Генерация объектов|программно сгенерировать]]. == Виды генерации =="mcgrawhilldict">McGraw  Существует два основных подхода к генерации синтетических наборов данных. В случае, когда реальные данные отсутствуют или их сбор невозможен (из- Hill dictionary of scientific and technical terms / Под редза большой длительности или дороговизны процесса), наборы генерируются полностью случайным образом на основе некой статистической модели, которая учитывает законы распределения реальных данных. Sybil PОднако, такой подход не всегда оправдывает себя из-за того, что синтетические данные могут не учитывать весь спектр возможных случаев, и полученная с помощью такого набора модель может давать непредсказуемые результаты в крайних случаях. Parker Также применяется [[wikipedia:Data_augmentation|аугментация]] (англ. augmentation) — генерация наборов на основе имеющихся бизнес- 3-е издпроцессов. К имеющимся данным применяются различные способы искажения: например, для изображений могут использоваться различные геометрические преобразования, искажения цвета, кадрирование, поворот, добавление шума и иные. Для числовых данных могут использоваться такие искажения, как добавление объектов с усреднёнными значениями, смешивание с объектами из другого распределения, добавление случайных выбросов. Преимущества использования синтетических данных: * Возможность генерации наборов данных практически любого размера. * Известность параметров генерации, а значит, и генеральной совокупности: можно сравнить оценки модели и истинные параметры, и исходя из этого судить о качестве полученных выборочных оценок параметров. * Ускорение и удешевление процесса разработки: не нужно ждать, пока будет собран и размечен достаточный объём реальных данных. * Повышение доступности больших объёмов данных. - New York В то же время, у синтетических данных есть и недостатки: * Отсутствие универсального способа генерации, применимого для любых задач: McGraw - Hill book coв каждом конкретном случае необходимо дополнительное исследование требований, накладываемых на генерируемые данные. * Отсутствие универсальных метрик качества и применимости генерируемых данных* Излишняя «стерильность» получаемых данных: в общем случае неизвестно, какими могут быть выбросы в реальных данных<ref>Если выбросы известны, 1984то проблема может быть решена путём настройки параметров генератора.</ref>.
Нередко возникают ситуации, когда получение реальных данных сложно или дорого, но при этом известны требования к таким объектам, правила их генерации и законы распределения. Как правило, это происходит, когда речь идёт о чувствительных персональных данных — например, информации о банковских счетах. В таких случаях необходимые наборы данных можно программно сгенерировать.
== Применение ==
Сгенерированные объекты можно использовать в [[Общие понятия#Классификация задач машинного обучения|задаче обучения с учителем ]] для расширения обучающего множества, сведя её к задачам [[Обучение с частичным привлечением учителя|частичного обучения ]] и [[Обучение с частичным привлечением учителя#Самообучение (Self Training)|самообучения]]. Довольно распространённым подходом является обучение сначала на большом наборе синтетических данных, а затем дообучение на небольшом наборе имеющихся реальных данных. В Иногда при обучении реальные данные не используются вовсе. При этом в тестовых множествах использовать синтетические наборы данных нельзя: в них должны быть только реальные объекты. Синтетические данные используют не только при недоступности реальных, но и для того, чтобы изменить распределение классов в уже имеющихся данных, дополнив их по [[Алгоритмы сэмплирования|определённому алгоритму]]<ref name="wiki:oversampling">Oversampling and undersampling in data analysis — https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis — Retrieved January 11, 2021</ref>.  Синтетические данные активно используются при обучении алгоритмов управления [[wikipedia:Self-driving car|автономным транспортом]]. Эти алгоритмы решают две задачи: сначала [[Обнаружение и обработка дорожных знаков и пешеходов|выявляют окружающие объекты]] — машины, дорожные знаки, пешеходов, а затем принимают решение о направлении и скорости дальнейшего движения. При реализации таких алгоритмов наиболее важно поведение транспортного средства в критических ситуациях, таких как помехи на дороге или некорректные показания сенсоров — от этого могут зависеть жизни людей. В реальных данных же, наоборот, в основном присутствуют штатные ситуации. Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется набор, в котором входными данными считаются полученные изображения, а целевыми — исходные. В самом деле, получить реальные данные для такой задачи — фотографию и её же искажённую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется. Таким образом, если исходные изображения достаточно хорошо описывали источник данных, то полученный набор данных можно применять для обучения алгоритма восстановления изображений, устраняющего применённые преобразования. Также с помощью синтетических наборов данных можно упростить обучение алгоритмов [[Компьютерное зрение|компьютерного зрения]], решающих задачи [[Сегментация изображений|семантической сегментации]], [[Компьютерное зрение#Идентификация|поиска]] и [[Компьютерное зрение#Распознавание объектов|локализации]] объектов. В данном случае подходят наборы, в которых искомые объекты определённым образом наносятся на фоновое изображение. В частности, таким объектом может быть текст — тогда с помощью полученного набора может быть решена задача [[Распознавание текста на изображении|распознавания текста на изображении]]. Синтетические данные используются и для создания алгоритмов [[Реидентификация|реидентификации]]<sup>[на 25.01.21 не создан]</sup> — определения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. В этом случае реальные данные собрать довольно сложно, потому что требуется найти много фотографий одних и тех же людей в разных позах, с разных ракурсов и в разной одежде. При генерации синтетических наборов данных необходимо учитывать специфику каждого конкретного случая, общего алгоритма, подходящего для всех случаев не существует. Как правило, общие алгоритмы наподобие добавления средних значений оказываются нерепрезентативными. == Примеры ==
При генерации синтетических наборов данных необходимо учитывать специфику каждого конкретного случая[[Файл:TextSharpener-Identity.png|200px|thumb|right|Рисунок 1. Пример работы TextSharpener. Слева направо: размытое изображение, исходное изображение, результат работы алгоритма<ref name="TextSharpener">Unblurring images of text with convolutional neural networks — https://gardarandri.github.io/TextSharpener/ — Retrieved January 8, общего универсального способа генерации данных не существует2021</ref>.]]
== Виды генерации = TextSharpener ===
Существует два основных подхода к генерации синтетических наборов Алгоритм TextSharpener<ref name="TextSharpener"/>, разработанный по методологии SCRUM в Университете Исландии и основанный на [[Сверточные нейронные сети|свёрточной нейронной сети]], позволяет убирать размытие текста на изображениях (см. рисунок 1). Для подготовки набора данных, который подошёл для обучения такого алгоритма, хватило [https://github.com/gardarandri/TextSharpener/blob/master/generator/GenImages.py тривиального скрипта] на Python, генерирующего случайные прямоугольники и надписи на них, а затем размывавшего их, с помощью библиотеки PIL<ref name="PIL">Pillow — Pillow (PIL Fork) 8.1.0 Documentation — https://pillow.readthedocs.io/en/stable/ — Retrieved January 25, 2021</ref>.
В случае[[Файл:Jefferson_Graham_on_Manhattan_Beach_Pier.jpeg|200px|thumb|left|Рисунок 2. Фотография, когда реальные данные отсутствуют, наборы генерируются полностью случайным образом на основе некой статистической модели, которая учитывает законы распределения реальных данныхсделанная широкоугольной камерой<ref>https://commons.wikimedia.org/wiki/File:Jefferson_Graham_on_Manhattan_Beach_Pier. Однако, такой подход не всегда оправдывает себя из-за того, что синтетические данные могут не учитывать весь спектр возможных случаевjpg — Retrieved January 24, и полученная с помощью такого набора модель может давать непредсказуемые результаты в крайних случаях2021</ref>.]]
Также применяется [[wikipedia:Data_augmentation|аугментация]] — генерация наборов на основе имеющихся реальных данных. К имеющимся данным применяются различные способы искажения: например, для изображений могут использоваться различные геометрические преобразования, искажения цвета, кадрирование, поворот, добавление шума и иные; для числовых данных -- добавление объектов с усреднёнными значениями, смешивание с объектами из другого распределения, добавление случайных выбросов, и прочие.=== OmniSCV ===
Нередко различные устройства оснащаются широкоугольными и панорамными камерами с углом обзора до 360°. Изображения, получаемые с таких камер, обладают довольно сильными искажениями (см. рисунок 2).
Генератор изображений комнат OmniSCV<ref name="OmniSCV">OmniSCV — https://www.mdpi.com/1424-8220/20/7/2066/htm — Retrieved January 11, 2021</ref> используется при разработке роботов для обучения алгоритмов [[Компьютерное зрение|компьютерного зрения]] для устранения искажений широкоугольных объективов и неидеальных условий освещённости.
* Взять чтоГенератор умеет симулировать различные варианты бизнес-то из процессов — [[wikipedia:Oversampling_and_undersampling_in_data_analysisEquirectangular projection|равноугольные]]и [[wikipedia:Cylindrical perspective|цилиндрические]] панорамы, [[wikipedia:Fisheye lens|«рыбьи глаза»]] и [[wikipedia:Catadioptric system|катадиоптрические системы]], а также сопровождать сгенерированные изображения комнат вспомогательной информацией об окружающем пространстве и параметрах используемой камеры (см.* Можно картинку из https://habrрисунок 3).com/ru/company/smartengines/blog/264677/
Изображения этого набора данных генерируются с помощью графического движка Unreal Engine 4<ref name="ue">EpicGames. Unreal Engine 4 Documentation. — https://docs.unrealengine.com/en-US/index.html — Retrieved January 21, 2021</ref> и плагина UnrealCV<ref name= Достоинства ="uecv">UnrealCV — https://unrealcv.org/ — Retrieved January 24, 2021</ref>. Каждое преобразование задаётся несложной функцией, связывающей координаты плоскости исходного изображения и луча, исходящего из окружающей среды. Например, для равноугольной проекции удобнее всего использовать [[wikipedia:Spherical coordinate system|сферические координаты]]: <tex>(\theta, \phi) =((\frac{2x}{x_{max}}-1)\pi, (1/2 - \frac{y}{y_{max}})\pi)</tex>, где <tex>(x, y)</tex> — координаты пикселя, а <tex>(x_{max}, y_{max})</tex> — разрешение изображения. За центр сферы в этой системе координат принимается [[wikipedia:Cardinal point (optics)#Principal planes and points|оптический центр]].
* Возможность генерации наборов данных практически любого размера{{wide image|Omniscv-example.png|1580px|Рисунок 3. Примеры полученных панорам. Слева направо: равноугольная, цилиндрическая и нецентральная (non-central) проекция<ref name="OmniSCV"/>.}}
* Известность параметров генерации, а значит[[Файл:Flyingchairs.png|200px|thumb|right|Рисунок 4. Пример из набора FlyingChairs<ref name="FlyingChairs">Computer Vision Group, и генеральной совокупностиFreiburg — https: можно судить о качестве выборочных оценок модели на параметры распределений//lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html — Retrieved January 11, путём сравнения их с истинными параметрами2021</ref>.]]
* Ускорение и удешевление процесса разработки: не нужно ждать, пока будет собран и размечен достаточный объём реальных данных=== FlyingChairs ===
* Повышение доступности больших объёмов Набор данныхFlyingChairs<ref name="FlyingChairs" /> и его производные представляют из себя наборы изображений, на которые искусственно добавлены предметы в движении (например, стулья, как на рисунке 4). Эти наборы данных применяются в алгоритмах [[Компьютерное зрение|компьютерного зрения]], в частности для поиска движения.
FlyingChairs строится следующим образом: авторы выбрали несколько сотен изображений с фотохостинга [https://flickr.com Flickr] из категорий «город», «ландшафт», «горы». Части этих изображений использовались в качестве фона. Далее на них накладывались стулья<ref name== Недостатки =="fc-chairs">Aubry M., Maturana D., Efros A., Russell B., Sivic J. Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models — InCVPR, 2014</ref>, для каждого стула были представлены 62 различных угла обзора.
* Отсутствие универсального способа генерацииС помощью двумерных аффинных преобразований сдвигается как фон, так и стулья — это позволяет эмулировать одновременно движение как стульев, так и «камеры». Авторы используют другой набор данных, MPI Sintel<ref name="sintel">Butler D. J., Wulff J., Stanley G. B., Black M.J. Anaturalistic open source movie for optical flow evaluation // ECCV, Part IV — Springer-Verlag, 2012 — с. 611–625</ref>, применимого для любых задач: в каждом конкретном случае необходимо дополнительное исследование требованийполучения информации об естественном распределении таких параметров, как начальные позиции объектов и параметры движения, накладываемых на генерируемые данныеи сохранении этого распределения.
* Отсутствие универсальных метрик качества [[Файл:Vc-clothes.png|400px|thumb|left|Рисунок 5. Пример данных набора VC-Clothes. В первой строке — фон, в каждой из следующих — один и применимости генерируемых данныхтот же человек в разной одежде<ref name="VC-Clothes">VC-Clothes — https://wanfb.github.io/dataset.html — Retrieved January 11, 2021</ref>.]]
* Излишняя «стерильность» получаемых данных: в общем случае неизвестно, какими могут быть выбросы в реальных данных<ref>Если выбросы известны, то проблема может быть решена путём настройки параметров генератора.</ref>=== VC-Clothes ===
Набор данных VC-Clothes<ref name== Примеры =="VC-Clothes"/> создан для разработки алгоритмов реидентификации. Он представляет из себя сгенерированные изображения одинаковых людей в разной одежде и на разном фоне. Помимо реидентификации, этот набор данных также может быть использован для решения задачи семантической [[Сегментация изображений|сегментации]], для отделения пикселей, соответствующих одежде, от пикселей, соответствующих лицу персонажа.
=== NVIDIA Для создания набора была использована известная компьютерная игра Grand Theft Auto V. Эта игра поддерживает детальную настройку внешнего вида персонажей, произвольные параметры окружающей среды (освещение, угол обзора) и миниатюрные миры === большое количество встроенных сцен — множество улиц, зданий и других мест. При генерации фиксируется маршрут каждого персонажа и позиции камер. Не со всех ракурсов распознаётся непосредственно лицо (см. рисунок 5), но человек вполне может быть распознан по полу, возрасту, фигуре, причёске и другим характеристикам. В итоге набор изображений включает 512 персонажей, 4 сцены и в среднем 9 изображений для каждого персонажа и каждой сцены.
* NVidia использует синтетические данные для генерации [[Файл:SynthText-in-the-Wild.png|200px|thumb|right|Рисунок 6. Пример изображения из набора SynthText in the Wild<ref name="миниатюрных мировSynthText", которые затем применяются для обучения и иногда для тестирования алгоритмов управления беспилотными транспортными средствами (вот источник, книга от NVidia: >Visual Geometry Group - University of Oxford — https://www.nvidiarobots.ox.ac.comuk/content~vgg/damdata/en-zzscenetext/Solutions— Retrieved January 19, 2021</deep-learning/resources/accelerating-ai-with-synthetic-data-ebook/accelerating-ai-with-synthetic-data-nvidia_webref>.pdf)]]
=== TextSharpener SynthText in the Wild ===
Набор данных SynthText in the Wild<ref name="SynthText"/> разработан для обучения алгоритмов [[Файл:TextSharpener-IdentityРаспознавание текста на изображении|распознавания текста на изображении]]. Он берёт обычные изображения и накладывает на них неизогнутый текст из определённого набора (см.png|200px|thumb|right|Пример работы TextSharpenerрисунок 6). Слева — исходное изображение, посередине — размытоеНабор сопровождается подробной аннотацией: для каждого изображения указаны используемые фразы, справа — результат работы алгоритмаа также координаты каждого слова и символа на изображении.]]
Одно из самых наглядных применений аугментации данных Чтобы полученный набор выглядел натурально, применяется следующий подход<ref name="SynthText-paper">Gupta A., Vedaldi A., Zisseman A. Synthetic Data for Text Localisation in Natural Images // IEEE Conference on Computer Vision and Pattern Recognition алгоритмы восстановления изображений2016</ref>. Сначала изображение делится на несколько областей в зависимости от значений соседних цветов и текстуры. Для работы таких алгоритмов исходный набор изображений расширяется их копиямиЗатем с помощью [[Сверточные нейронные сети|CNN]] строится карта глубины — определяется, какая точка ближе к камере, а какая дальше (см. рисунок 7). После этого можно по каждой области определить нормаль к которым применяются некие преобразования поверхности. Алгоритм исключает из фиксированного наборавыбора неподходящие поверхности — очень маленькие, непропорциональные или ортогональные направлению съемки. На Наконец, на основе полученных изображений генерируется датасетцвета области выбирается цвет текста (и иногда — контура), случайным образом выбирается шрифт, в котором входными данными считаются полученные изображенияпосле чего текст «накладывается» на изображение с помощью геометрических трансформаций и преобразования Пуассона. Этот процесс повторяется несколько раз, а целевыми — исходныечтобы наложить сразу несколько текстовых объектов на изображение.
В самом деле, получить реальные данные {{wide image|Synthtext-Generation-Process.png|1100px|Рисунок 7. Процесс нанесения текста на изображение. Слева направо: исходное изображение; карта глубины (светлее — дальше); разбиение на поверхности; области для такой задачи — фотографию нанесения текста и её же нечеткую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется. Таким образом, если исходные изображения достаточно хорошо описывали источник данных, то полученный датасет можно применять случайно выбранный для обучения алгоритма восстановления изображений, устраняющего применённые преобразованияних цвет; готовое изображение<ref name="SynthText-paper"/>.}}
Один из известных алгоритмов такого рода — TextSharpener[[Файл:UnityEyes.png|200px|thumb|left|Рисунок 8. Образцы глаз, смотрящие в различных направлениях<ref name="TextSharpenerunityeyes">Unblurring images of text with convolutional neural networks — https://gardarandriWood, E., Baltrusaitis, T., Morency, L., Robinson, P.github, Bulling, A.ioLearning an appearance-based gaze estimator from one million synthesised images /TextSharpener/ — Retrieved January 8, 2020Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications — 2016</ref>. Этот алгоритм, разработанный в Университете Исландии и основанный на [[Сверточные нейронные сети|свёрточной нейронной сети]], позволяет убирать размытие текста на изображениях.
=== UnityEyes ===
В 2016 году по методологии SCRUM была разработана утилита [https://www.cl.cam.ac.uk/research/rainbow/projects/unityeyes/ UnityEyes], которая позволяет в реальном времени генерировать реалистичные изображения глаз, направленных в нужном направлении, показанные с требуемого ракурса (см. рисунок 8). Это позволяет решать задачу '''окулографии''' (англ. gaze estimation) — определения направления взгляда человека по фотографии.
Программист бизнес-приложений получает в два раза больше программистов других приложений, поэтому он должен знать и эти алгоритмы.
TODO:Изображения генерируются с помощью игрового движка Unity 5, доработанного авторами UnityEyes для значительного ускорения рендеринга. Используются 20 трёхмерных изображений головы людей различного возраста, с различным цветом кожи и формой глаз. Помимо этого, используются HDR-панорамы для получения естественного окружающего зеркального отблеска в глазах.
* Стулья (например рассказать про [[Файл:Nvidia-drive-sample.png|400px|thumb|right|Рисунок 9. Примеры миров, сгенерированных NVIDIA DRIVE<ref name="nvidia">[https://lmbwww.informatiknvidia.unicom/content/dam/en-zz/Solutions/deep-freiburg.delearning/resources/datasetsaccelerating-ai-with-synthetic-data-ebook/FlyingChairsaccelerating-ai-with-synthetic-data-nvidia_web.pdf El Emam, K. Accelerating AI with Synthetic Data] — Beijing, Boston, Farnham, Sebastopol, Tokyo: O'Reilly Media, Inc.en, 2020.</ref>.html)]]
* Одежда (??)=== NVIDIA DRIVE ===
* Комнаты Для обучения автономного транспорта компания NVIDIA разработала по методологии SCRUM платформу NVIDIA DRIVE Constellation<ref name="nvidia" />, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камеры, радара и лидаров. В обучении используется два режима — симуляция после восприятия (частично https://structured3dангл. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-datasetend simulation''). В режиме симуляции объектов из сгенерированных миров (см.org/рисунок 9)обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах.
* Текст (ну не, не книжки из бреда, сгенерированного Марковскими цепями, а например картинки, в которых текст как-то хитро расположен: https://www== См.robots.ox.ac.uk/~vgg/data/scenetext/)также ==
* [[Автоматическое машинное обучение]]
* [[Генерация объектов]]
* [[Переобучение]]
== Примечания ==
<references/>
 
== Источники ==
 
* Synthetic data — https://en.wikipedia.org/wiki/Synthetic_data — Retrieved January 11, 2021
* McGraw - Hill dictionary of scientific and technical terms / Под ред. Sybil P. Parker. - 3-е изд. - New York: McGraw - Hill book co., 1984
 
[[Категория: Машинное обучение]]
[[Категория: Генерация объектов]]
1632
правки

Навигация