Изменения

Перейти к: навигация, поиск

Синтетические наборы данных

10 560 байт добавлено, 19:26, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Определение
|definition='''Синтетические данные''' — это программно сгенерированные данные, используемые в прикладных задачах бизнес-приложениях (в том числе в машинном обучении).
}}
Нередко возникают ситуации, когда получение реальных данных бизнес-процессов сложно или дорого, но при этом известны требования к таким объектамбизнес-процессам, правила создания и законы распределения. Как правило, это происходит, когда речь идёт о чувствительных персональных данных — например, информации о банковских счетахили медицинской информации. В таких случаях необходимые наборы данных можно программно сгенерировать. == Применение == Сгенерированные объекты можно использовать в [[Общие понятия#Классификация задач машинного обученияГенерация объектов|задаче обучения с учителем]] для расширения обучающего множества, сведя её к задачам частичного обучения и самообучения. В тестовых множествах использовать синтетические наборы данных нельзя: в них должны быть только реальные объекты. Синтетические данные используют не только при недоступности реальных, но и для того, чтобы изменить распределение классов в уже имеющихся данных, дополнив их по [[Алгоритмы сэмплирования|определённому алгоритмупрограммно сгенерировать]]<ref name="wiki:oversampling">Oversampling and undersampling in data analysis — https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis — Retrieved January 11, 2021</ref>.  При генерации синтетических наборов данных необходимо учитывать специфику каждого конкретного случая, общего алгоритма, подходящего для всех случаев не существует. Как правило, общие алгоритмы наподобие добавления средних значений оказываются нерепрезентативными.
== Виды генерации ==
Существует два основных подхода к генерации синтетических наборов данных.
В случае, когда реальные данные отсутствуютили их сбор невозможен (из-за большой длительности или дороговизны процесса), наборы генерируются полностью случайным образом на основе некой статистической модели, которая учитывает законы распределения реальных данных. Однако, такой подход не всегда оправдывает себя из-за того, что синтетические данные могут не учитывать весь спектр возможных случаев, и полученная с помощью такого набора модель может давать непредсказуемые результаты в крайних случаях.
Также применяется [[wikipedia:Data_augmentation|аугментация]] (англ. augmentation) — генерация — генерация наборов на основе имеющихся реальных данныхбизнес-процессов. К имеющимся данным применяются различные способы искажения: например, для изображений могут использоваться различные геометрические преобразования, искажения цвета, кадрирование, поворот, добавление шума и иные. Для числовых данных могут использоваться такие искажения, как добавление объектов с усреднёнными значениями, смешивание с объектами из другого распределения, добавление случайных выбросов.
== Достоинства ==Преимущества использования синтетических данных:
* Возможность генерации наборов данных практически любого размера.
* Известность параметров генерации, а значит, и генеральной совокупности: можно сравнить оценки модели и истинные параметры, и исходя их из этого судить о качестве полученных выборочных оценок параметров.
* Ускорение и удешевление процесса разработки: не нужно ждать, пока будет собран и размечен достаточный объём реальных данных.
* Повышение доступности больших объёмов данных.
== Недостатки ==В то же время, у синтетических данных есть и недостатки:
* Отсутствие универсального способа генерации, применимого для любых задач: в каждом конкретном случае необходимо дополнительное исследование требований, накладываемых на генерируемые данные.
* Излишняя «стерильность» получаемых данных: в общем случае неизвестно, какими могут быть выбросы в реальных данных<ref>Если выбросы известны, то проблема может быть решена путём настройки параметров генератора.</ref>.
== Примеры ==
=== Автономный транспорт Применение == Сгенерированные объекты можно использовать в [[Общие понятия#Классификация задач машинного обучения|задаче обучения с учителем]] для расширения обучающего множества, сведя её к задачам [[Обучение с частичным привлечением учителя|частичного обучения]] и [[Обучение с частичным привлечением учителя#Самообучение (Self Training)|самообучения]]. Довольно распространённым подходом является обучение сначала на большом наборе синтетических данных, а затем дообучение на небольшом наборе имеющихся реальных данных. Иногда при обучении реальные данные не используются вовсе. При этом в тестовых множествах использовать синтетические наборы данных нельзя: в них должны быть только реальные объекты. Синтетические данные используют не только при недоступности реальных, но и для того, чтобы изменить распределение классов в уже имеющихся данных, дополнив их по [[Алгоритмы сэмплирования|определённому алгоритму]]<ref name= "wiki:oversampling">Oversampling and undersampling in data analysis — https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis — Retrieved January 11, 2021</ref>.
Автономный транспорт — это вид транспорта, управление которым осуществляется без участия человека Синтетические данные активно используются при помощи оптических датчиков, систем геолокации и компьютерных обучении алгоритмов<ref>управления [[wikipedia:Self-driving car — https://en.wikipedia|автономным транспортом]].org/wiki/Self-driving_car — Retrieved January 8, 2021</ref>. Алгоритму управления транспортным средством нужно решить Эти алгоритмы решают две задачи: сначала [[Обнаружение и обработка дорожных знаков и пешеходов|выявить выявляют окружающие объекты]] — машины, дорожные знаки, пешеходов, а затем принять принимают решение о направлении и скорости дальнейшего движения. При реализации таких алгоритмов наиболее важно поведение транспортного средства в критических ситуациях, таких как помехи на дороге или некорректные показания сенсоров — от этого могут зависеть жизни людей. В реальных данных же, наоборот, в основном присутствуют штатные ситуации.
Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для решения этой проблемы компания NVIDIA разработала платформу NVIDIA DRIVE Constellation<ref>[https://www.nvidia.com/content/dam/en-zz/Solutions/deep-learning/resources/accelerating-ai-with-synthetic-data-ebook/accelerating-ai-with-synthetic-data-nvidia_web.pdf El Emamработы таких алгоритмов исходный набор изображений расширяется их копиями, Kк которым применяются некие преобразования из фиксированного набора. Accelerating AI with Synthetic Data] — BeijingНа основе полученных изображений генерируется набор, Bostonв котором входными данными считаются полученные изображения, Farnhamа целевыми — исходные. В самом деле, Sebastopolполучить реальные данные для такой задачи — фотографию и её же искажённую копию — довольно затруднительно, Tokyo: O'Reilly Media, Incа применение таких преобразований довольно легко автоматизируется.Таким образом, 2020.</ref>если исходные изображения достаточно хорошо описывали источник данных, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует то полученный набор данных можно применять для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камерыобучения алгоритма восстановления изображений, радара и лидаровустраняющего применённые преобразования.
В обучении компания использует два режима — симуляция после восприятия (англ. ''postperception simulation'') Также с помощью синтетических наборов данных можно упростить обучение алгоритмов [[Компьютерное зрение|компьютерного зрения]], решающих задачи [[Сегментация изображений|семантической сегментации]], [[Компьютерное зрение#Идентификация|поиска]] и сквозная симуляция (англ. ''end-to-end simulation'')[[Компьютерное зрение#Распознавание объектов|локализации]] объектов. В режиме симуляции объектов из сгенерированных миров обучаемому алгоритму передаётся список объектов и их подробное описаниеданном случае подходят наборы, в свою очередь алгоритм должен выбрать дальнейшие действия автомобилякоторых искомые объекты определённым образом наносятся на фоновое изображение. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мирачастности, и алгоритм должен также распознать таким объектом может быть текст — тогда с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож полученного набора может быть решена задача [[Распознавание текста на реальный мир и учитывает помехи, возникающие изображении|распознавания текста на сенсорахизображении]].
Синтетические данные используются и для создания алгоритмов [[Файл:TextSharpener-Identity.pngРеидентификация|200px|thumb|right|Рис 1реидентификации]]<sup>[на 25. Пример работы TextSharpener01. Слева 21 не создан]</sup> размытое изображениеопределения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. В этом случае реальные данные собрать довольно сложно, посередине — исходноепотому что требуется найти много фотографий одних и тех же людей в разных позах, справа — результат работы алгоритмас разных ракурсов и в разной одежде.]]
=== TextSharpener ===При генерации синтетических наборов данных необходимо учитывать специфику каждого конкретного случая, общего алгоритма, подходящего для всех случаев не существует. Как правило, общие алгоритмы наподобие добавления средних значений оказываются нерепрезентативными.
Одно из самых наглядных применений аугментации данных — алгоритмы восстановления изображений. Для работы таких алгоритмов исходный набор изображений расширяется их копиями, к которым применяются некие преобразования из фиксированного набора. На основе полученных изображений генерируется датасет, в котором входными данными считаются полученные изображения, а целевыми — исходные.== Примеры ==
В самом деле, получить реальные данные для такой задачи — фотографию и её же нечеткую копию — довольно затруднительно, а применение таких преобразований довольно легко автоматизируется[[Файл:TextSharpener-Identity.png|200px|thumb|right|Рисунок 1. Пример работы TextSharpener. Таким образомСлева направо: размытое изображение, если исходные изображения достаточно хорошо описывали источник данныхисходное изображение, то полученный датасет можно применять для обучения результат работы алгоритма восстановления изображений<ref name="TextSharpener">Unblurring images of text with convolutional neural networks — https://gardarandri.github.io/TextSharpener/ — Retrieved January 8, устраняющего применённые преобразования2021</ref>.]]
Один из известных алгоритмов такого рода — TextSharpener<ref name="== TextSharpener">Unblurring images of text with convolutional neural networks — https://gardarandri.github.io/TextSharpener/ — Retrieved January 8, 2021</ref>. Этот алгоритм, разработанный в Университете Исландии и основанный на [[Сверточные нейронные сети|свёрточной нейронной сети]], позволяет убирать размытие текста на изображениях (см. изображение 1).===
Алгоритм TextSharpener<ref name="TextSharpener"/>, разработанный по методологии SCRUM в Университете Исландии и основанный на [[Сверточные нейронные сети|свёрточной нейронной сети]], позволяет убирать размытие текста на изображениях (см. рисунок 1). Для подготовки набора данных, который подошёл для обучения такого алгоритма, хватило [https://github.com/gardarandri/TextSharpener/blob/master/generator/GenImages.py тривиального скрипта] на Python, генерирующего случайные прямоугольники и надписи на них, а затем размывавшего их, с помощью библиотеки PIL<ref name="PIL">Pillow — Pillow (PIL Fork) 8.1.0 Documentation — https://pillow.readthedocs.io/en/stable/ — Retrieved January 25, 2021</ref>. [[Файл:Jefferson_Graham_on_Manhattan_Beach_Pier.jpeg|200px|thumb|left|Изображение Рисунок 2. Фотография, сделанная широкоугольной камерой<ref>https://commons.wikimedia.org/wiki/File:Jefferson_Graham_on_Manhattan_Beach_Pier.jpg — Retrieved January 24, 2021</ref>.]]
=== OmniSCV ===
Нередко различные устройства оснащаются широкоугольными и панорамными камерами с углом обзора до 360°. Изображения, получаемые с таких камер, обладают довольно сильными искажениями (см. изображение рисунок 2).
Генератор изображений комнат OmniSCV<ref name="OmniSCV">OmniSCV — https://www.mdpi.com/1424-8220/20/7/2066/htm — Retrieved January 11, 2021</ref> используется при разработке роботов для обучения алгоритмов [[Компьютерное зрение|компьютерного зрения]] для устранения искажений широкоугольных объективов и неидеальных условий освещённости.
Генератор умеет симулировать различные варианты объективов бизнес-процессов [[wikipedia:Equirectangular projection|равноугольные ]] и [[wikipedia:Cylindrical perspective|цилиндрические ]] панорамы, [[wikipedia:Fisheye lens|«рыбьи глаза» ]] и [[wikipedia:Catadioptric system|катадиоптрические системы]], а также сопровождать сгенерированные изображения комнат вспомогательной информацией об окружающем пространстве и параметрах используемой камеры(см.рисунок 3). Изображения этого набора данных генерируются с помощью графического движка Unreal Engine 4<ref name="ue">EpicGames. Unreal Engine 4 Documentation. — https://docs.unrealengine.com/en-US/index.html — Retrieved January 21, 2021</ref> и плагина UnrealCV<ref name="uecv">UnrealCV — https://unrealcv.org/ — Retrieved January 24, 2021</ref>. Каждое преобразование задаётся несложной функцией, связывающей координаты плоскости исходного изображения и луча, исходящего из окружающей среды. Например, для равноугольной проекции удобнее всего использовать [[wikipedia:Spherical coordinate system|сферические координаты]]: <tex>(\theta, \phi) = ((\frac{2x}{x_{max}}-1)\pi, (1/2 - \frac{y}{y_{max}})\pi)</tex>, где <tex>(x, y)</tex> — координаты пикселя, а <tex>(x_{max}, y_{max})</tex> — разрешение изображения. За центр сферы в этой системе координат принимается [[wikipedia:Cardinal point (optics)#Principal planes and points|оптический центр]]. {{wide image|Omniscv-example.png|1580px|Рисунок 3. Примеры полученных панорам. Слева направо: равноугольная, цилиндрическая и нецентральная (non-central) проекция<ref name="OmniSCV"/>.}} [[Файл:Flyingchairs.png|200px|thumb|right|Рисунок 4. Пример из набора FlyingChairs<ref name="FlyingChairs">Computer Vision Group, Freiburg — https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html — Retrieved January 11, 2021</ref>.]]
=== FlyingChairs ===
Набор данных FlyingChairs<ref name="FlyingChairs">Computer Vision Group, Freiburg — https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html — Retrieved January 11, 2021</ref> и его производные представляют из себя наборы изображений, на которые искусственно добавлены предметы в движении (например, стулья, как на рисунке 4). Эти наборы данных применяются при решении таких задач компьютерного зрения, как в алгоритмах [[Сегментация изображенийКомпьютерное зрение|семантическая сегментациякомпьютерного зрения]], в частности для поиска движения. FlyingChairs строится следующим образом: авторы выбрали несколько сотен изображений с фотохостинга [[Компьютерное зрение#Идентификация|поиск]https://flickr.com Flickr] из категорий «город», «ландшафт», «горы». Части этих изображений использовались в качестве фона. Далее на них накладывались стулья<ref name="fc-chairs">Aubry M., Maturana D., Efros A., Russell B., Sivic J. Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models — InCVPR, 2014</ref>, для каждого стула были представлены 62 различных угла обзора. С помощью двумерных аффинных преобразований сдвигается как фон, так и стулья — это позволяет эмулировать одновременно движение как стульев, так и «камеры». Авторы используют другой набор данных, MPI Sintel<ref name="sintel">Butler D. J., Wulff J., Stanley G. B., Black M.J. Anaturalistic open source movie for optical flow evaluation // ECCV, Part IV — Springer-Verlag, 2012 — с. 611–625</ref>, для получения информации об естественном распределении таких параметров, как начальные позиции объектов и параметры движения, и сохранении этого распределения. [[Компьютерное зрение#Распознавание объектовФайл:Vc-clothes.png|400px|thumb|left|локализация]] объектаРисунок 5. Пример данных набора VC-Clothes. В первой строке — фон, а также более сложныхв каждой из следующих — один и тот же человек в разной одежде<ref name="VC-Clothes">VC-Clothes — https://wanfb.github.io/dataset.html — Retrieved January 11, например, для поиска движения2021</ref>.]]
=== VC-Clothes ===
Набор данных VC-Clothes<ref name="VC-Clothes">VC-Clothes — https://wanfb.github.io/dataset.html — Retrieved January 11, 2020</ref> создан для разработки алгоритмов '''реидентификации''' — определения, действительно ли на двух изображениях один и тот же человек. Эти алгоритмы могут использоваться для нахождения людей на записях с камер, на пограничных пунктах и так далее. VC-Clothes Он представляет из себя сгенерированные изображения одинаковых людей в разной одежде и на разном фоне. Помимо реидентификации, этот датасет набор данных также может быть использован для решения задачи семантической [[Сегментация изображений|сегментации]], для отделения пикселей, соответствующих одежде, от пикселей, соответствующих лицу персонажа.
Для создания набора была использована известная компьютерная игра Grand Theft Auto V. Эта игра поддерживает детальную настройку внешнего вида персонажей, произвольные параметры окружающей среды (освещение, угол обзора) и большое количество встроенных сцен — множество улиц, зданий и других мест. При генерации фиксируется маршрут каждого персонажа и позиции камер. Не со всех ракурсов распознаётся непосредственно лицо (см. рисунок 5), но человек вполне может быть распознан по полу, возрасту, фигуре, причёске и другим характеристикам. В итоге набор изображений включает 512 персонажей, 4 сцены и в среднем 9 изображений для каждого персонажа и каждой сцены. [[Файл:SynthText-in-the-Wild.png|200px|thumb|right|Рис. 3Рисунок 6. Пример изображения из набора SynthText in the Wild<ref name="SynthText">Visual Geometry Group - University of Oxford — https://www.robots.ox.ac.uk/~vgg/data/scenetext/ — Retrieved January 19, 2021</ref>.]]
=== SynthText in the Wild ===
Набор данных SynthText in the Wild<ref name="SynthText">Visual Geometry Group - University of Oxford — https://www.robots.ox.ac.uk/~vgg/data/scenetext/ — Retrieved January 19, 2020</ref> разработан для обучения алгоритмов [[Распознавание текста на изображении|распознавания текста на изображении]]. Он берёт обычные изображения и накладывает на них неизогнутый текст из определённого набора (риссм. 3рисунок 6). Набор сопровождается подробной аннотацией: для каждого изображения указаны используемые фразы, а также координаты каждого слова и символа на изображении. Чтобы полученный набор выглядел натурально, применяется следующий подход<ref name="SynthText-paper">Gupta A., Vedaldi A., Zisseman A. Synthetic Data for Text Localisation in Natural Images // IEEE Conference on Computer Vision and Pattern Recognition — 2016</ref>. Сначала изображение делится на несколько областей в зависимости от значений соседних цветов и текстуры. Затем с помощью [[Сверточные нейронные сети|CNN]] строится карта глубины — определяется, какая точка ближе к камере, а какая дальше (см. рисунок 7). После этого можно по каждой области определить нормаль к поверхности. Алгоритм исключает из выбора неподходящие поверхности — очень маленькие, непропорциональные или ортогональные направлению съемки. Наконец, на основе цвета области выбирается цвет текста (и иногда — контура), случайным образом выбирается шрифт, после чего текст «накладывается» на изображение с помощью геометрических трансформаций и преобразования Пуассона. Этот процесс повторяется несколько раз, чтобы наложить сразу несколько текстовых объектов на изображение. {{wide image|Synthtext-Generation-Process.png|1100px|Рисунок 7. Процесс нанесения текста на изображение. Слева направо: исходное изображение; карта глубины (светлее — дальше); разбиение на поверхности; области для нанесения текста и случайно выбранный для них цвет; готовое изображение<ref name="SynthText-paper"/>.}} [[Файл:UnityEyes.png|200px|thumb|left|Рисунок 8. Образцы глаз, смотрящие в различных направлениях<ref name="unityeyes">Wood, E., Baltrusaitis, T., Morency, L., Robinson, P., Bulling, A. Learning an appearance-based gaze estimator from one million synthesised images // Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications — 2016</ref>.]] === UnityEyes === В 2016 году по методологии SCRUM была разработана утилита [https://www.cl.cam.ac.uk/research/rainbow/projects/unityeyes/ UnityEyes], которая позволяет в реальном времени генерировать реалистичные изображения глаз, направленных в нужном направлении, показанные с требуемого ракурса (см. рисунок 8). Это позволяет решать задачу '''окулографии''' (англ. gaze estimation) — определения направления взгляда человека по фотографии. Программист бизнес-приложений получает в два раза больше программистов других приложений, поэтому он должен знать и эти алгоритмы. Изображения генерируются с помощью игрового движка Unity 5, доработанного авторами UnityEyes для значительного ускорения рендеринга. Используются 20 трёхмерных изображений головы людей различного возраста, с различным цветом кожи и формой глаз. Помимо этого, используются HDR-панорамы для получения естественного окружающего зеркального отблеска в глазах.
Чтобы полученный набор выглядел натурально[[Файл:Nvidia-drive-sample.png|400px|thumb|right|Рисунок 9. Примеры миров, применяется следующий подходсгенерированных NVIDIA DRIVE<ref name="SynthText-papernvidia">Gupta A[https://www., Vedaldi Anvidia., Zisseman A. Synthetic Data for Text Localisation in Natural Images com/content/dam/en-zz/Solutions/deep-learning/resources/ IEEE Conference on Computer Vision and Pattern Recognition — 2016<accelerating-ai-with-synthetic-data-ebook/ref>accelerating-ai-with-synthetic-data-nvidia_web. Сначала изображение делится на несколько областей в зависимости от значений соседних цветов и текстурыpdf El Emam, K. Затем с помощью [[Сверточные нейронные сети|CNNAccelerating AI with Synthetic Data]] строится карта глубины определяетсяBeijing, какая точка ближе к камереBoston, а какая дальше. После этого можно по каждой области определить нормаль к поверхности. НаконецFarnham, на основе цвета области выбирается цвет текста (и иногда — контура)Sebastopol, случайным образом выбирается шрифтTokyo: O'Reilly Media, после чего текст «накладывается» на изображение с помощью геометрических трансформаций и преобразования ПуассонаInc. Этот процесс повторяется несколько раз, чтобы наложить сразу несколько текстовых объектов на изображение2020.</ref>.]]
{{wide image|Synthtext-Generation-Process.png|1700px|Рис 4. Процесс генерации набора. Слева направо: исходное изображение; карта глубины (светлее — дальше); разбиение на поверхности; области для нанесения текста и случайно выбранный для них цвет}}=== NVIDIA DRIVE ===
Для обучения автономного транспорта компания NVIDIA разработала по методологии SCRUM платформу NVIDIA DRIVE Constellation<ref name="nvidia" />, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камеры, радара и лидаров. В обучении используется два режима — симуляция после восприятия (англ. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-end simulation''). В режиме симуляции объектов из сгенерированных миров (см. рисунок 9) обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах.
== См. также ==
1632
правки

Навигация