Изменения

Перейти к: навигация, поиск

Слово Туэ-Морса

5318 байт добавлено, 09:26, 17 ноября 2016
Свойство о подстроках
* <tex>t_i = b</tex>, иначе.
Строки этой последовательности называются '''строками Туэ-Морса'''(англ. ''Thue–Morse sequence'').
}}
== Свойства и эквивалентные определения ==
===Свойство о получении следующей строки===Как видно из определения, символ на <tex>i</tex>-ой позиции не зависит от номера строки. Так как длина строк возрастает, каждая строка является собственным префиксом следующей, поэтому можно рассматривать получение следующей строки как приписывание к текущей строке некоторой другойстроки.
{{Теорема
|statement=
Пусть <tex>\varphi</tex> — морфизм, инвертирующий символы (:<tex>\varphi(ax) = \left\{ \begin{array}{rl} b</tex>, <tex>& x = a \\varphi(a, & x = b) = a, \\\end{array} \right.</tex>). Тогда   тогда для строк Туэ-Морса верно следующее соотношение: <tex>T_{n + 1} = T_n \varphi(T_n)</tex>
|proof=
Заметим, что соответсвующие соответствующие индексы символов при приписывании новой строки к строке <tex>T_n</tex> получаются добавлением к индексам <tex>i = 0, 1, \dots, 2^n - 1</tex> числа <tex>2^n</tex>. Количество единиц в двоичной записи числа <tex>i + 2^n</tex> (<tex>i < 2^n</tex>) ровно на один больше, чем в двоичной записи числа <tex>i</tex>. Поэтому приписываемая строка есть ни что иное, как исходная строка с инвертированными символами.
}}
Данная теорема позволяет определять последовательность строк Туэ-Морса следующим образом: <tex>T_0 = a</tex>, <tex>T_{n + 1} = T_n \varphi(T_n)</tex>.
Часто рассматривают предельный случай — бесконечную строку Туэ-Морса, любой символ которой можно получить из обычной строки Туэ-Морса с достаточно большим номером. Бесконечную строку также можно задать с помощью правил ассоциативного исчисления, клеточного автомата, рекурсивных соотношений . ===Свойство о подстроках=== {{Теорема|statement=Не существует двух равных как строки подстрок строки <tex>T_n</tex>, имеющих пересекающиеся вхождения в <tex>T_n</tex>|proof=Заметим, что <tex>t_{2n}=t_n</tex> для <tex>n \geqslant 0</tex>, так как количество единиц числа <tex>2n</tex> и <tex>n</tex> одинаково. Так же заметим, что <tex>t_{2n+1}=\varphi(t_n)</tex> для <tex>n \geqslant 0</tex>, потому что <tex>2n</tex> и <tex>2n+1</tex> одинаковы в двоичной системе, кроме последнего бита, а количество единиц числа <tex>2n</tex> и <tex>n</tex> одинаково. Пусть существует две равные как строки подстрок строки <tex>T_n</tex>, имеющих пересекающиеся вхождения в <tex>T_n</tex>, тогда <tex>T_n=ucxcxcv</tex>, где <tex>u,c,x,v</tex> {{---}} подстроки строки <tex>T_n</tex>, а строка <tex>cxc</tex> {{---}} искомая подстрока. Пусть <tex>m=|cx|</tex> и <tex>k=|u|</tex>, тогда <tex>t_{k+j}=t_{k+j+m}</tex> по предположению при <tex>0 \leqslant j \leqslant m</tex>. Рассмотрим наименьшее <tex>m\geqslant 1</tex>. Тогда возможны два случая: <tex>m</tex> четно и нечетно:# <tex>m</tex> четно. #: Тогда пусть <tex>m=2m'</tex>. Рассмотрю два случая: <tex>k</tex> четно или нечетно:#* <tex>k</tex> четно: #*:Пусть <tex>k=2k'</tex>. Так как <tex>t_{k+j}=t_{k+j+m}</tex> при <tex>0 \leqslant j \leqslant m</tex>, тогда очевидно, что <tex>t_{2k'+2j'}=t_{2k'+2j'+2m'}</tex> для <tex> 0 \leqslant j' \leqslant m'</tex>. Так как <tex>t_{2k'+2j'}=t_{k'+j'}</tex> и <tex>t_{2k'+2j'+2m'}=t_{k'+j'+m'}</tex> очевидно, что <tex>t_{k'+j'}=t_{k'+j'+m'}</tex> для <tex>0 \leqslant j' \leqslant m'</tex>. Это противоречие, так как <tex>m</tex> минимально.#* <tex>k</tex> нечетно: #*: Пусть <tex>k=2k'+1</tex>. Тогда, как и в предыдущем случае <tex>t_{2k'+2j'+1}=t_{2k'+2j'+2m'+1}</tex> для <tex>0 \leqslant j' \leqslant m'</tex> и тогда <tex>t_{k'+j'}=t_{k'+j'+m'}</tex> для <tex>0 \leqslant j' \leqslant m'</tex>, что является опять противоречием из-за минимальности <tex>m</tex>#<tex>m</tex> нечетно. #:Тогда рассмотрю три случая: <tex>m \geqslant 5</tex>, <tex>m=3</tex> и <tex>m=1</tex>. Пусть <tex>b_n=\left\{ \begin{array}{rl} a, & t_n=t_{n-1} \\b, & t_n \ne t_{n-1} \\\end{array} \right.</tex>, для <tex>n \geqslant 1</tex>. Заметим, что <tex>b_{4n+2}=a</tex> так как <tex>4n+2</tex> и <tex>4n+1</tex> одинаково записываются в двоичной записи, кроме последних двух битов, которые равны <tex>10</tex> и <tex>01</tex> соответственно и значит <tex>t_{4n+2}=t_{4n+1}</tex>. Так же заметим, что <tex>b_{2n+1}=b</tex>, так далеекак <tex>2n+1</tex> и <tex>2n</tex> одинаково записываются в двоичной системе, кроме последнего бита и значит, что <tex>t_{2n+1}=\varphi(t_{2n})</tex>#* <tex>m</tex> нечетно и <tex>m \geqslant 5</tex>. #*:Тогда <tex>b_{k+j}=b_{k+j+m}</tex> для <tex>1 \leqslant j \leqslant m</tex>. С <tex>m \geqslant 5</tex> существует <tex>j</tex>, такое что <tex>k+j=2</tex> по модулю <tex>4</tex>. Тогда для <tex>k+j</tex> точно известно, что <tex>b_{k+j}=0</tex>, но с другой стороны <tex>k+j+m</tex> {{---}} нечетно, значит <tex>b_{k+j+m}=1</tex>. Противоречие.#* <tex>m=3</tex>. #*:Аналогично: <tex>b_{k+j}=b_{k+j+3}</tex> для <tex>1 \leqslant j \leqslant 3</tex>. Найдем <tex>j</tex>, чтобы <tex>k+j=2</tex> или <tex>k+j=3</tex> по модулю <tex>4</tex>. Если <tex>k+j=2</tex> по модулю <tex>4</tex>, то противоречие получается так же, как в предыдущем пункте. Рассмотрим <tex>k+j=3</tex> по модулю <tex>4</tex>, тогда <tex>b_{k+j}=1</tex>, но <tex>b_{k+j+3}=0</tex>. Это опять противоречие.#* <tex>m=1</tex>. #*:Тогда <tex>t_k=t_{k+1}=t_{k+2}</tex> из чего следует, что <tex>t_{2n}=t_{2n+1}</tex> для <tex>n=\dfrac{k}{2}</tex>, но <tex>t_{2n}=\varphi(t_{2n+1}) \ne t_{2n+1}</tex>. Противоречие. }} == См.также ==* [[Слово Фибоначчи]]
== Ссылки Источники информации==
* [http://en.wikipedia.org/wiki/Thue%E2%80%93Morse_sequence Wikipedia — Thue-Morse sequence]
* [http://mathworld.wolfram.com/Thue-MorseSequence.html Wolfram Mathworld — Thue-Morse sequence]
* Jean-Paul Allouche,Jeffrey Shallit «Automatic Sequences: Theory, Applications, Generalizations» {{---}} 15 стр.
[[Категория:Алгоритмы и структуры данных]]
[[Категория:Основные определения. Простые комбинаторные свойства слов]]
Анонимный участник

Навигация