Изменения

Перейти к: навигация, поиск

Аксиоматизация матроида циклами

6486 байт добавлено, 00:03, 26 июня 2011
Аксиоматизация+доказательство
{{Теорема
|about=
Аксиоматизация матроида циклами
|statement=
Пусть семейство <tex>\mathfrak C</tex> подмножеств конечного непустого множетва <tex>\mathbb E</tex> и
# <tex>\varnothing \notin \mathfrak C</tex><br/>
# Если <tex>\mathbb C_1, \mathbb C_2 \in \mathfrak C</tex> и <tex>\mathbb C_1 \ne \mathbb C_2</tex>, то <tex>\mathbb C_1 \nsubseteq \mathbb C_2</tex> и <tex>\mathbb C_2 \nsubseteq \mathbb C_1</tex>
# Если <tex>\mathbb C_1, \mathbb C_2 \in \mathfrak C, \mathbb C_1 \ne \mathbb C_2</tex> и <tex>p \in \mathbb C_1 \cap \mathbb C_2</tex>, то существует <tex>\mathbb C \in \mathfrak C</tex> такой, что <tex>\mathbb C \subseteq (\mathbb C_1 \cup \mathbb C_2) \setminus p.</tex>
Тогда семейство <tex>\mathfrak C</tex> совпадает с семейством однозначно определенного матроида на <tex>\mathbb E</tex>
|proof=
Пусть семейство <tex>\mathfrak C</tex> удовлетворяет условию теоремы. Множество <tex>\mathbb I \nsubseteq \mathbb E</tex> назовем <tex>\mathfrak C</tex>-независимым, если оно не содержит ни одного из множеств <tex>\mathbb C \in \mathfrak C</tex>. Через <tex>\mathfrak I</tex> обозначим семейство всех <tex>\mathfrak C</teX>-независимых множеств, содержащихся в <tex>\mathbb E</tex>. Проверим, что семейство <tex>\mathfrak I</tex> удовлетворяет аксиомам из определения матроида.

Поскольку <tex>\varnothing \notin \mathfrak C</tex>, имеем <tex>\varnothing \in \mathfrak I</tex>, очевидно первая аксиома выполняется.

Очевидно, что если <tex>\mathbb A \in \mathfrak I</tex> и <tex>\mathbb B \subset \mathbb A</tex> то <tex>\mathbb B \in \mathfrak I</tex>, вторая аксиома выполнена.

Проверим справедливость третей аксиомы для семейства <tex>\mathfrak I</tex>. Предположим, что существуют множества <tex>\mathbb I, \mathbb J \in \mathfrak I</tex> такие, что <tex>|\mathbb I|<|\mathbb J|</tex>, для которых третья аксиома не выполнена. Среди всех таких пар <tex>\mathbb I, \mathbb J</tex> выберем ту, у которой мощность <tex>|\mathbb I \cup \mathbb J|</tex> минимальна. Положим <tex>\mathbb J \setminus \mathbb I = \{p_1,...,p_t\}</tex>. Если <tex>t = 1</tex>, то, очевидно, <tex>\mathbb I \subset \mathbb J</tex> и аксиома выполняется. Поэтому имеем <tex>t \ge 2</tex>.

В силу нашего предположения <tex>\mathbb I \cup p_i \notin \mathfrak I</tex> для любого <tex>i=1,...,t</tex>. Следовательно, существует <tex>\mathbb C_i \in \mathfrak C</tex> такое, что <tex>\mathbb C_i \subseteq \mathbb I \cup p_i</tex> и в силу <tex>\mathfrak C</tex>-независимости множества <tex>\mathbb I</tex> имеем <tex>p_i \in C_i</tex> для любого <tex>i=1,...,t</tex>. Ясно, что множества <tex>C_1,...,C_t</tex> попарно различны.

Рассмотрим множество <tex>\mathbb C_1</tex>. Для него верно <tex>p_1 \in \mathbb C_1 \subseteq \mathbb I \cup p_1</tex>. В силу <tex>\mathfrak C</tex>-независимости <tex>\mathbb J</tex> существует <tex>q_1 \in \mathbb I \setminus \mathbb J</tex> такой, что <tex>q_1 \in \mathbb C_1</tex>. Рассмотрим теперь множество <tex>(\mathbb I \setminus q_1) \cup p_1</tex>.

Если <tex>(\mathbb I \setminus q_1) \cup p_1 \notin \mathfrak I</tex>, то существует <tex>\mathbb C' \in \mathfrak C</tex>, длф которого существует такой <tex>\mathbb C'' \in \mathfrak C</tex>, что <tex>\mathbb C'' \subseteq (\mathbb C_1 \cup \mathbb C_2) \setminus p_1 \subseteq \mathbb I</tex>. Пришли к противоречию с условием <tex>\mathbb I \in \mathfrak I</tex>.

Пусть <tex>(\mathbb I \setminus q_1) \cup p_1 \in \mathfrak I</tex>. Заметим, что <tex>|((\mathbb I \setminus q_1) \cup p_1) \cup \mathbb J| < |\mathbb I \cup \mathbb J|</tex>. Поэтому в силу выбора пары <tex>\mathbb I, \mathbb J</tex> для пары <tex>(\mathbb I \setminus q_1) \cup p_1, J</tex> существует элемент <tex>p_j</tex>, где <tex>j \ge 2</tex>, такой, что <tex>(\mathbb I \setminus q_1) \cup p_1 \cup p_j \in \mathfrak I</tex>. Возьмем множество <tex>\mathbb C_j \in \mathfrak C</tex>. Для него выполняется <tex>p_j \in \mathbb C_j \subseteq \mathbb I \cup p_j</tex>. Если <tex>q_1 \notin \mathbb C_j</tex>, то <tex>\mathbb C_j \subseteq (\mathbb I \setminus q_1) \cup p_j \subseteq (\mathbb I \setminus q1) \cup p_1 \cup p_j</tex>, что невозможно. Следовательно, <tex>q_1 \in \mathbb C_j \cap C_1</tex> и <tex>\mathbb C_j \ne \mathbb C_1</tex>. Тогда по 3 пункуту теоремы, существует <tex>\mathbb C \in \mathfrak C</tex>, для которого <tex>\mathbb C \subseteq (\mathbb C_j \cup \mathbb C_1) \setminus q_1 \subseteq (\mathbb C_j \setminus q_1) \cup (\mathbb C_1 \setminus q_1) \subseteq ((\mathbb I \setminus q_1) \cup p_j) \cup ((\mathbb I \setminus q_1) \cup p_1) = (\mathbb I \setminus q_10 \cup p_1 \cup p_j \in \mathfrak I</tex>, что невозможно.

Итак, семейство <tex>\mathfrak I</tex> удовлетворяет аксиомам матроида. Следовательно, существует матроид <tex>M(\mathbb E)</tex> на множестве <tex>\mathbb E</tex>, для которого семейство <tex>\mathfrak I</tex> является семейством независимых множеств. Из определения <tex>\mathfrak C</tex>-независимости легко следует, что семейство <tex>\mathfrak C</tex> совпадает с множеством цисклов матроида <tex>M(\mathbb E)</tex>
}}
143
правки

Навигация