Изменения
→Доказательство
Итак, есть множество <tex>S \subset 2^{m}</tex>, и мы хотим доказать, что либо <tex>|S| > 2K</tex>, либо <tex>|S| < K</tex>.
Выберем <tex>k</tex> так, чтобы <tex>2^{k-2} \le 2K \le 2^{k-1}</tex>.
Возьмем <tex>h \in H_{m,k}</tex> (<tex>H_{m,k}</tex> существует согласно соответствующей [[Семейство универсальных попарно независимых хеш-функций|теореме]]) и <tex>y \in 2^k</tex>. Далее, отправим запрос <tex>P</tex> на получение <tex>s \in S</tex>, такого, что <tex>h(s)=y</tex>, и проверим, верно ли в действительности, что полученный <tex>s \in S</tex>.
Пусть <tex>p=\frac{2K}{2^k}</tex>.
* если <tex>|S|<K</tex> , то <tex>|h(s)| < \frac{p \cdot 2^k}{2} = K \Rightarrow P(</tex>успех<tex>) \le p/2</tex>.