81
правка
Изменения
использован вики-шаблон, переформулированы определения, исправлены мелкие ошибки, источники литературы, ссылка на "полные сис. функ."
== Полная система функций ==
Система [[Определение булевой функции|булевых функций ]] называется ''полной'', если можно построить их [[Суперпозиции|суперпозицию]], тождественную любой другой заранее заданной функции. Говорят ещё, что замыкание данной системы совпадает с множеством <math>P_2</math>.
Американский математик Эмиль Пост ввёл в рассмотрение следующие замкнутые классы булевых функций:
== Критерий Поста ==
Критерий Поста — одна из центральных теорем в теории [[Определение булевой функции|булевых функций]], устанавливающая необходимое и достаточное условие для того, чтобы некоторый набор булевых функций обладал достаточной выразительностью, чтобы представить любую булеву функцию. Впервые сформулирован американским математиком Эмилем Постом в 1941г.
== Замкнутые классы булевых функций ==
Класс самодвойственных функций <tex>S</tex>.{{Определение|definition=Говорят, что функция самодвойственна, если <tex>f(1\overline{x_1}, 1\dots,\overline{x_n})=\overline{f(x_1, \dots, 1x_n) = 1}</tex>. Иными словами, функция называется самодвойственной, если на противоположных наборах она принимает противоположные значения.}}
Функция является линейной тогда, и только тогда, когда в ее полиноме [[Полином_Жегалкина|Жегалкина]] присутствуют слагаемые, каждое из которых зависит не более чем от одной переменной. Построить полином Жегалкина можно с помощью [[Преобразование Мёбиуса для получения коэффициентов полинома Жегалкина|преобразования Мебиуса]].
В итоге получаем функцию '''НЕ''', а также либо функцию '''И''', либо функцию '''ИЛИ''', но '''НЕ''' образует базис и с той и с другой функциями. Из того, что через функции '''F''' можно выразить базис, следует, что '''F''' {{---}} полная система функций, что и требовалось доказать.
}}
== Примеры полных систем булевых функций от двух переменных ==
Широко известна [[Представление функции формулой, полные системы функций|полная система функций]] <tex>\left\{\land,\lor,\neg\right\}</tex>. Однако, эта система функций не является безызбыточной, т. к. функцию <tex>\land</tex> можно выразить через <tex>\lor</tex> и <tex>\neg</tex>. Система функций <tex>\left\{\lor,\neg\right\}</tex> безызбыточная, т. к. функция <tex>\lor</tex> является несамодвойственной и нелинейной, а функция <tex>\neg</tex> не сохраняет 0, не сохраняет 1 и немонотонна. Система функций <tex>\left\{\land,\lor,\neg\right\}</tex> используется для представления функций в [[СДНФ|СДНФ]] и [[СКНФ|СКНФ]].
Также существуют полные системы функций, состоящие только из одной функции. Это <tex>\triangledown</tex> и <tex>\downarrow</tex>.
== Источники ==
* Образовательный сайт [http://mini-soft.ru/nstu/diskr/7_.php MiniSoft]
* [http://en.wikipedia.org/wiki/Post%27s_lattice Post's lattice]
* [http://www.mielt.ru/dir/cat14/subj266/file299/view1397.html Лекции по дискретной математике]
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Булевы функции]]