13
правок
Изменения
Нет описания правки
Если <tex>f_g</tex> {{---}} перестановка, то <tex>f_{g^{-1}}</tex> {{---}} обратная перестановка, где <tex>g^{-1}</tex> {{---}} обратный элемент <tex>g</tex>, так как <tex> (f_{g^{-1}} \circ f_g) (x) = f_{g^{-1}}(f_g (x)) =g^{-1} * g * x = x </tex>.
Если <tex>e</tex> {{---}} нейтральный элемент в группе, то <tex>f_e</tex> {{---}} тождественная перестановка.
Таким образом множество всех функций <tex>K = \{f_g : g \in G\}</tex> {{---}} подгруппа симметрической группы, так как композиция двух функций из <tex>K</tex> не выводит из <tex>K</tex>: , потому что <tex>(f_a \circ f_b)(x) = f_a(f_b(x)) = a * b * x = f_{a*b}(x) = f_c(x) </tex>, где <tex>c = a * b</tex> т.е. <tex>c \in G</tex>
Пусть <tex>\circ</tex> {{---}} композиция двух перестановок.