90
правок
Изменения
м
Нет описания правки
:''A''(''BC'') = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 операций.
Как мы видим, первый способ гораздо эффективней. Теперь стало понятно, что нам надо найти оптимальную расстановку скобок в нашем выражении из <mathtex>n</mathtex> матриц. Как бы это сделать? Мы можем перебрать все расстановки скобок (brute force), но время выполнения этого алгоритма будет расти экспоненциально от <mathtex>n</mathtex> количества матриц, так как навскидку в каждую позицию мы можем поставить открывающуюся и закрывающуюся скобку, то асимптотика будет равна <mathtex>O(2^n)</mathtex>. Решение данной задачи, как мы увидим — это разбить нашу задачу на подзадачи. Так же мы увидим, что с помощю решения однократного решения подзадачи и повторного использования ответа, мы сможем заметно сократить асимптотику.
=== Оптимизации динамическим программированием ===
Одно из простых решений — это ''мемоизация''. Каждый раз, когда мы считаем минимальную стоимость перемножения определенной подпоследовательности, давайте мы будем запоминать ответ. Если мы когда либо ещё раз захотим посчитать это ещё раз, то мы уже будет иметь ответ и не будем пересчитывать. Поскольку существует всего <mathtex>O(n^2)</mathtex> подотрезков, где <mathtex>n</mathtex> — это количество матриц, то память занимаемая программой будет не так велика. Можно сказать, что с помощью этого простого трюка мы уменьшили асимптотику алгоритма (перебор) с <mathtex>O(2^n)</mathtex> до <mathtex>O(n^3)</mathtex>, что является достаточно эффективным для реальных приложений.
=== Восстановление ответа ===