Изменения

Перейти к: навигация, поиск

Эргодическая марковская цепь

680 байт убрано, 05:03, 28 декабря 2011
Нет описания правки
[[Файл:MarkovTriangle.png|thumb|350px|Примеры графов переходов для цепей Маркова:
a) цепь не является слабо эргодической (не существует общего стока <ref>'''Общий сток''' - такая <tex>k</tex> вершина графа, что для любых двух различных вершин графа переходов <tex>i,j \, (i\neq j)</tex>, существуют ориентированные пути от вершины <tex>i</tex> к вершине <tex>k</tex> и от вершины <tex>j</tex> к вершине <tex>^{[1]}k</tex>.</ref> для состояний <tex>A_2, \, A_3</tex>);
b) слабо эргодическая, но не эргодическая цепь (граф переходов является [[Отношение связности, компоненты связности|слабо-связным]])
c) эргодическая цепь ([[Отношение связности, компоненты связности|сильно-связный]] граф переходов).]]
==Примечания==
# '''Общий сток''' - такая <tex>k</tex> вершина графа, что для любых двух различных вершин графа переходов <tex>i,j \, (i\neq j)<references /tex>, существуют ориентированные пути от вершины <tex>i</tex> к вершине <tex>k</tex> и от вершины <tex>j</tex> к вершине <tex>k</tex>.# Ориентированный граф называется '''слабо-связным''', если является связным неориентированный граф, полученный из него заменой ориентированных рёбер неориентированными.# Ориентированный граф называется '''сильно-связным''', если в нём существует (ориентированный) путь из любой вершины в любую другую, или, что эквивалентно, граф содержит ровно одну сильно связную компоненту.
# Если цепь Маркова такова, что её состояния образуют лишь один неразложимый класс <tex>^{[7]}</tex>, то она называется '''неразложимой'''.
# Возвратное состояние <tex>i</tex> называется '''положительным''', если <tex> \mathbb{E}[T_i] = \sum\limits_{n=1}^{\infty} n f^{(n)}_{ii} < \infty</tex> <tex>(</tex>где <tex>f_{ii}^{(n)} = \mathbb{P}(X_n = i,\; X_k \not= i, \, k=1,\ldots, n-1 \mid X_0 = i )</tex> — вероятность, выйдя из состояния <tex>i</tex>, вернуться в него ровно за <tex>n</tex> шагов<tex>)</tex>.
338
правок

Навигация