53
правки
Изменения
Нет описания правки
Докажем, что <tex>BH_{2,D} \in EXP</tex>. Симулируем работу детерминированной машины <tex>m</tex>. Для этого потребуется время порядка <tex>t^{2}</tex>, но <tex>t \le 2^{|t|} \le 2^{|\langle m,x,t \rangle|}</tex>. Таким образом, общее время работы <tex>T \le (2^{|\langle m,x,t \rangle|})^{2} = 2^{2n}</tex> и <tex>BH_{2,D} \in EXP</tex>.
Докажем, что любая задача из <tex>EXP</tex> сводится к <tex>BH_{2,D}</tex>. Пусть <tex>L \in EXP, MT\enskip m</tex>, допускающая язык <tex>L</tex>, работает за время <tex>T \le 2^{p(n)}</tex>, где <tex>p(n)</tex> - полином. Рассмотрим <tex>f : x \rightarrow \langle m,x,2^{p(n)} \rangle</tex> - функция сведения. Чтобы выписать свой результат на ленту ей потребуется полиномиальное от <tex>n</tex> число шагов, так как запись <tex>m</tex> имеет константную длину, <tex>|x| = n</tex> и запись числа <tex>2^{p(n)}</tex> имеет длину порядка <tex>p(n)</tex> в двоичной системе.