165
правок
Изменения
Нет описания правки
В прошлых сериях:
*'''Пространство непрерывных функций''' — линейное нормированное пространство, элементами которого являются непрерывные на отрезке <tex>[a,b]</tex> функции (обычно обозначается <tex>{\mathrm C}[a,b]</tex>). Норма в этом пространстве определяется следующим образом: <tex>||x||_{{\mathbf C}[a,b]}=\max_{t\in [a,b]}|x(t)|</tex>
* '''Теорема Рисса — Фреше:''' Для любого непрерывного линейного функционала <tex>f</tex> на Гильбертовом пространстве <tex> H</tex> существует единственный вектор <tex>y \in H</tex> такой, что <tex>f(x)=(x,y)</tex> для любого <tex>x \in H</tex>. При этом норма линейного функционала <tex>f</tex> совпадает с нормой вектора <tex>y</tex>:
<tex>\|f\|=\sup_{\|x\|=1} |f(x)|= \sqrt{(y,y)}</tex>. Теорема также означает, что пространство всех линейных ограниченных функционалов над <tex>H</tex> изоморофно пространству <tex>H</tex>.
1. <tex>A^{*}</tex> и его ограниченность.