Изменения

Перейти к: навигация, поиск

ДНФ

6 байт добавлено, 03:04, 12 января 2012
м
СДНФ
{{Теорема
|statement=
Для любой булевой функции <tex>f(\vecoverline{x})</tex>, не равной тождественному нулю, существует СДНФ, ее задающая.
|proof =
Для любой булевой функции выполняется следующее соотношение, называемое '''разложением Шеннона'''.
Т.к применение данного соотношения к каждой из переменных увеличивает количество дизъюнктивных членов в два раза, то для функции от <tex>n</tex> переменных мы имеем <tex>2^n</tex> дизъюнктивных членов. Каждый из них соответствует значению функции на одном из <tex>2^n</tex> возможных наборов значений n переменных. Если на некотором наборе <tex>f(\vec{x})=0</tex>, то весь соответствующий дизъюнктивный член также равен нулю и из представления данной функции его можно исключить. Если же <tex> f(\vec{x})=1</tex>, то в соответствующем дизъюннктивном члене само значение функции можно опустить. В результате для произвольной функции была построена СДНФ.
}}
 
== Алгоритм построения СДНФ по таблице истинности ==
# В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 1.
1302
правки

Навигация