Изменения

Перейти к: навигация, поиск

Задача о наибольшей общей подпоследовательности

Нет изменений в размере, 04:08, 13 января 2012
м
Доказательство оптимальности
|proof=
# Если бы выполнялось <tex> z_k \neq x_m </tex>, то к <tex> Z </tex> можно было бы добавить элемент <tex> x_m = y_n </tex>, и тогда получилась бы общая подпоследовательность длины <tex> k + 1 </tex>, что противоречит предположению, что <tex> Z </tex> — НОП. Значит, выполняется <tex> z_k = x_m = y_n </tex>. Значит, <tex> Z_{k - 1} </tex> — общая подпоследовательность <tex> X_{m - 1} </tex> и <tex> Y_{n - 1} </tex>. Докажем от противного, что <tex> Z_{k - 1} </tex> — НОП. Пусть : тогда есть общая подпоследовательность <tex> W </tex>, длина которой больше <tex> k - 1 </tex> (т.е. больше длины <tex> Z </tex>). Добавив к <tex> W </tex> элемент <tex> x_m = y_n </tex>, получим НОП, длина которой больше <tex> k </tex>((т.е. больше длины <tex> Z </tex>), что приводит к противоречию.
# Если <tex> z_k \neq x_m </tex>, то <tex> Z </tex> — общая подпоследовательность <tex> X_{m - 1} </tex> и <tex> Y </tex>. Пусть существует их общая подпоследовательность <tex> W </tex>, длина которой превышает <tex> k </tex>. Она также является общей подпоследовательностью <tex> X </tex> и <tex> Y </tex>, что противоречит предположению о том, что <tex> Z </tex> (длины <tex> k </tex>) — НОП <tex> X </tex> и <tex> Y </tex>.
# Аналогично второму случаю.
418
правок

Навигация